--- base_model: medicalai/ClinicalBERT tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: ClinicalBERT-medical-text-classification results: [] --- # ClinicalBERT-medical-text-classification This model is a fine-tuned version of [medicalai/ClinicalBERT](https://huggingface.co/medicalai/ClinicalBERT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8610 - Accuracy: 0.235 - Precision: 0.2005 - Recall: 0.235 - F1: 0.2115 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 2.6094 | 1.0 | 250 | 2.4951 | 0.353 | 0.1617 | 0.353 | 0.2001 | | 2.2177 | 2.0 | 500 | 1.9842 | 0.359 | 0.2967 | 0.359 | 0.2843 | | 1.8458 | 3.0 | 750 | 1.8258 | 0.345 | 0.2843 | 0.345 | 0.2893 | | 1.6992 | 4.0 | 1000 | 1.8139 | 0.302 | 0.2616 | 0.302 | 0.2729 | | 1.4773 | 5.0 | 1250 | 1.8341 | 0.265 | 0.2458 | 0.265 | 0.2482 | | 1.3138 | 6.0 | 1500 | 1.8610 | 0.235 | 0.2005 | 0.235 | 0.2115 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2