fbaldassarri
commited on
Initial Upload
Browse files- README.md +84 -3
- config.json +51 -0
- generation_config.json +6 -0
- model.safetensors +3 -0
- quantization_config.json +24 -0
- special_tokens_map.json +23 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +0 -0
README.md
CHANGED
@@ -1,3 +1,84 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
- fr
|
5 |
+
tags:
|
6 |
+
- pytorch
|
7 |
+
- causal-lm
|
8 |
+
- mistral
|
9 |
+
- autoround
|
10 |
+
- auto-round
|
11 |
+
- intel-autoround
|
12 |
+
- gptq
|
13 |
+
- woq
|
14 |
+
- intel
|
15 |
+
- pytorch
|
16 |
+
- mistralai
|
17 |
+
license: apache-2.0
|
18 |
+
model_name: Mistral 7B v0.3 Instruct
|
19 |
+
base_model:
|
20 |
+
- mistralai/Mistral-7B-v0.3-Instruct
|
21 |
+
inference: false
|
22 |
+
model_creator: mistralai
|
23 |
+
pipeline_tag: text-generation
|
24 |
+
prompt_template: '{prompt}
|
25 |
+
'
|
26 |
+
quantized_by: fbaldassarri
|
27 |
+
---
|
28 |
+
|
29 |
+
## Model Information
|
30 |
+
|
31 |
+
Quantized version of [mistralai/Mistral-7B-v0.3-Instruct](https://huggingface.co/mistralai/Mistral-7B-v0.3-Instruct) using torch.float32 for quantization tuning.
|
32 |
+
- 4 bits (INT4)
|
33 |
+
- group size = 128
|
34 |
+
- Symmetrical Quantization
|
35 |
+
- Method WoQ (AutoRound format)
|
36 |
+
|
37 |
+
Fast and low memory, 2-3X speedup (slight accuracy drop at W4G128)
|
38 |
+
|
39 |
+
Quantization framework: [Intel AutoRound](https://github.com/intel/auto-round) v0.4.3
|
40 |
+
|
41 |
+
Note: this INT4 version of Mistral-7B-v0.3-Instruct has been quantized to run inference through CPU.
|
42 |
+
|
43 |
+
## Replication Recipe
|
44 |
+
|
45 |
+
### Step 1 Install Requirements
|
46 |
+
|
47 |
+
I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment.
|
48 |
+
|
49 |
+
```
|
50 |
+
wget https://github.com/intel/auto-round/archive/refs/tags/v0.4.3.tar.gz
|
51 |
+
tar -xvzf v0.4.3.tar.gz
|
52 |
+
cd auto-round-0.4.3
|
53 |
+
pip install -r requirements-cpu.txt --upgrade
|
54 |
+
```
|
55 |
+
|
56 |
+
### Step 2 Build Intel AutoRound wheel from sources
|
57 |
+
|
58 |
+
```
|
59 |
+
pip install -vvv --no-build-isolation -e .[cpu]
|
60 |
+
```
|
61 |
+
|
62 |
+
### Step 3 Script for Quantization
|
63 |
+
|
64 |
+
```
|
65 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
66 |
+
model_name = "mistralai/Mistral-7B-v0.3-Instruct"
|
67 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
68 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
69 |
+
from auto_round import AutoRound
|
70 |
+
bits, group_size, sym, device, amp = 4, 128, True, 'cpu', False
|
71 |
+
autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device, amp=amp)
|
72 |
+
autoround.quantize()
|
73 |
+
output_dir = "./AutoRound/mistralai_Mistral-7B-v0.3-Instruct-autoround-int4-gs128-sym"
|
74 |
+
autoround.save_quantized(output_dir, format='auto_round', inplace=True)
|
75 |
+
```
|
76 |
+
|
77 |
+
## License
|
78 |
+
|
79 |
+
[Apache 2.0 License](https://choosealicense.com/licenses/apache-2.0/)
|
80 |
+
|
81 |
+
## Disclaimer
|
82 |
+
|
83 |
+
This quantized model comes with no warranty. It has been developed only for research purposes.
|
84 |
+
|
config.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
|
3 |
+
"architectures": [
|
4 |
+
"MistralForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"head_dim": 128,
|
10 |
+
"hidden_act": "silu",
|
11 |
+
"hidden_size": 4096,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 14336,
|
14 |
+
"max_position_embeddings": 32768,
|
15 |
+
"model_type": "mistral",
|
16 |
+
"num_attention_heads": 32,
|
17 |
+
"num_hidden_layers": 32,
|
18 |
+
"num_key_value_heads": 8,
|
19 |
+
"quantization_config": {
|
20 |
+
"amp": false,
|
21 |
+
"autoround_version": "0.4.3",
|
22 |
+
"backend": "auto_round:gptq:exllamav2",
|
23 |
+
"batch_size": 4,
|
24 |
+
"bits": 4,
|
25 |
+
"data_type": "int",
|
26 |
+
"dataset": "NeelNanda/pile-10k",
|
27 |
+
"enable_minmax_tuning": true,
|
28 |
+
"enable_norm_bias_tuning": false,
|
29 |
+
"enable_quanted_input": true,
|
30 |
+
"gradient_accumulate_steps": 1,
|
31 |
+
"group_size": 128,
|
32 |
+
"iters": 200,
|
33 |
+
"low_gpu_mem_usage": false,
|
34 |
+
"lr": 0.005,
|
35 |
+
"minmax_lr": 0.005,
|
36 |
+
"nsamples": 128,
|
37 |
+
"quant_method": "intel/auto-round",
|
38 |
+
"scale_dtype": "torch.float16",
|
39 |
+
"seqlen": 512,
|
40 |
+
"sym": true,
|
41 |
+
"to_quant_block_names": null
|
42 |
+
},
|
43 |
+
"rms_norm_eps": 1e-05,
|
44 |
+
"rope_theta": 1000000.0,
|
45 |
+
"sliding_window": null,
|
46 |
+
"tie_word_embeddings": false,
|
47 |
+
"torch_dtype": "float32",
|
48 |
+
"transformers_version": "4.47.1",
|
49 |
+
"use_cache": true,
|
50 |
+
"vocab_size": 32768
|
51 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.47.1"
|
6 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:77ab7ef744686fd65d19008a525d274a5f29fd31e5d23c6f466e24f4f582aa14
|
3 |
+
size 4705872016
|
quantization_config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bits": 4,
|
3 |
+
"group_size": 128,
|
4 |
+
"sym": true,
|
5 |
+
"data_type": "int",
|
6 |
+
"enable_quanted_input": true,
|
7 |
+
"enable_minmax_tuning": true,
|
8 |
+
"seqlen": 512,
|
9 |
+
"batch_size": 4,
|
10 |
+
"scale_dtype": "torch.float16",
|
11 |
+
"lr": 0.005,
|
12 |
+
"minmax_lr": 0.005,
|
13 |
+
"gradient_accumulate_steps": 1,
|
14 |
+
"iters": 200,
|
15 |
+
"amp": false,
|
16 |
+
"nsamples": 128,
|
17 |
+
"low_gpu_mem_usage": false,
|
18 |
+
"to_quant_block_names": null,
|
19 |
+
"enable_norm_bias_tuning": false,
|
20 |
+
"dataset": "NeelNanda/pile-10k",
|
21 |
+
"autoround_version": "0.4.3",
|
22 |
+
"quant_method": "intel/auto-round",
|
23 |
+
"backend": "auto_round:gptq:exllamav2"
|
24 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"unk_token": {
|
17 |
+
"content": "<unk>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
|
3 |
+
size 587404
|
tokenizer_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|