File size: 4,009 Bytes
ca97848
 
91596cb
 
ca97848
91596cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b47d17b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91596cb
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
---
language:
- en
license: cc-by-nc-nd-4.0
tags:
- UNA
- SOLAR
- MathPILE
datasets:
- GAIR/MathPile
model-index:
- name: UNA-POLAR-10.7B-InstructMath-v2
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 70.73
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNA-POLAR-10.7B-InstructMath-v2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 88.2
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNA-POLAR-10.7B-InstructMath-v2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 66.03
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNA-POLAR-10.7B-InstructMath-v2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 71.73
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNA-POLAR-10.7B-InstructMath-v2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 82.95
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNA-POLAR-10.7B-InstructMath-v2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 64.75
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNA-POLAR-10.7B-InstructMath-v2
      name: Open LLM Leaderboard
---

# UNA-POLAR-10.7B-InstructMath-v2

## Model description

Its a UNA version with DPO over MathPILE Books out of the UNA-SOLAR-10.7B-Instruct-1.0

I used MathPILE OUTSTANDING Dataset of great Mathematic material in order to produce this beautiful model :)

## Intended uses & limitations

If your model has inside UNA technology, cite.

## Training and evaluation data

UNA-DPO over Attention and MLP's


### Framework versions

- PEFT 0.7.1
- Transformers 4.36.2-UNA
- Pytorch 2.1.2+cu121
- Datasets 2.16.0
- Tokenizers 0.15.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_fblgit__UNA-POLAR-10.7B-InstructMath-v2)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |74.07|
|AI2 Reasoning Challenge (25-Shot)|70.73|
|HellaSwag (10-Shot)              |88.20|
|MMLU (5-Shot)                    |66.03|
|TruthfulQA (0-shot)              |71.73|
|Winogrande (5-shot)              |82.95|
|GSM8k (5-shot)                   |64.75|