fedovtt commited on
Commit
fc102bc
1 Parent(s): aac5e22

End of training

Browse files
Files changed (2) hide show
  1. README.md +155 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: other
4
+ base_model: NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: 7660796d-0d75-42f2-b323-4110aca49d6f
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.1`
20
+ ```yaml
21
+ adapter: lora
22
+ base_model: NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer
23
+ bf16: auto
24
+ chat_template: llama3
25
+ dataset_prepared_path: null
26
+ datasets:
27
+ - data_files:
28
+ - 7a3fd099d57dc91b_train_data.json
29
+ ds_type: json
30
+ format: custom
31
+ path: /workspace/input_data/7a3fd099d57dc91b_train_data.json
32
+ type:
33
+ field_instruction: question
34
+ field_output: answer
35
+ format: '{instruction}'
36
+ no_input_format: '{instruction}'
37
+ system_format: '{system}'
38
+ system_prompt: ''
39
+ debug: null
40
+ deepspeed: null
41
+ early_stopping_patience: null
42
+ eval_max_new_tokens: 128
43
+ eval_table_size: null
44
+ evals_per_epoch: 4
45
+ flash_attention: false
46
+ fp16: null
47
+ fsdp: null
48
+ fsdp_config: null
49
+ gradient_accumulation_steps: 4
50
+ gradient_checkpointing: false
51
+ group_by_length: false
52
+ hub_model_id: fedovtt/7660796d-0d75-42f2-b323-4110aca49d6f
53
+ hub_repo: null
54
+ hub_strategy: checkpoint
55
+ hub_token: null
56
+ learning_rate: 0.0002
57
+ load_in_4bit: false
58
+ load_in_8bit: false
59
+ local_rank: null
60
+ logging_steps: 1
61
+ lora_alpha: 16
62
+ lora_dropout: 0.05
63
+ lora_fan_in_fan_out: null
64
+ lora_model_dir: null
65
+ lora_r: 8
66
+ lora_target_linear: true
67
+ lr_scheduler: cosine
68
+ max_steps: 10
69
+ micro_batch_size: 2
70
+ mlflow_experiment_name: /tmp/7a3fd099d57dc91b_train_data.json
71
+ model_type: AutoModelForCausalLM
72
+ num_epochs: 1
73
+ optim_args:
74
+ adam_beta1: 0.9
75
+ adam_beta2: 0.95
76
+ adam_epsilon: 1e-5
77
+ optimizer: adamw_bnb_8bit
78
+ output_dir: miner_id_24
79
+ pad_to_sequence_len: true
80
+ resume_from_checkpoint: null
81
+ s2_attention: null
82
+ sample_packing: false
83
+ saves_per_epoch: 2
84
+ sequence_len: 1024
85
+ strict: false
86
+ tf32: false
87
+ tokenizer_type: AutoTokenizer
88
+ train_on_inputs: false
89
+ trust_remote_code: true
90
+ val_set_size: 0.05
91
+ wandb_entity: null
92
+ wandb_mode: online
93
+ wandb_name: 7660796d-0d75-42f2-b323-4110aca49d6f
94
+ wandb_project: Gradients-On-Demand
95
+ wandb_run: your_name
96
+ wandb_runid: 7660796d-0d75-42f2-b323-4110aca49d6f
97
+ warmup_steps: 10
98
+ weight_decay: 0.01
99
+ xformers_attention: null
100
+
101
+ ```
102
+
103
+ </details><br>
104
+
105
+ # 7660796d-0d75-42f2-b323-4110aca49d6f
106
+
107
+ This model is a fine-tuned version of [NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer](https://huggingface.co/NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer) on the None dataset.
108
+ It achieves the following results on the evaluation set:
109
+ - Loss: 3.0234
110
+
111
+ ## Model description
112
+
113
+ More information needed
114
+
115
+ ## Intended uses & limitations
116
+
117
+ More information needed
118
+
119
+ ## Training and evaluation data
120
+
121
+ More information needed
122
+
123
+ ## Training procedure
124
+
125
+ ### Training hyperparameters
126
+
127
+ The following hyperparameters were used during training:
128
+ - learning_rate: 0.0002
129
+ - train_batch_size: 2
130
+ - eval_batch_size: 2
131
+ - seed: 42
132
+ - gradient_accumulation_steps: 4
133
+ - total_train_batch_size: 8
134
+ - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
135
+ - lr_scheduler_type: cosine
136
+ - lr_scheduler_warmup_steps: 10
137
+ - training_steps: 10
138
+
139
+ ### Training results
140
+
141
+ | Training Loss | Epoch | Step | Validation Loss |
142
+ |:-------------:|:------:|:----:|:---------------:|
143
+ | 5.117 | 0.0007 | 1 | 5.0641 |
144
+ | 4.8776 | 0.0020 | 3 | 5.0045 |
145
+ | 4.3142 | 0.0040 | 6 | 4.2904 |
146
+ | 3.4731 | 0.0060 | 9 | 3.0234 |
147
+
148
+
149
+ ### Framework versions
150
+
151
+ - PEFT 0.13.2
152
+ - Transformers 4.46.0
153
+ - Pytorch 2.5.0+cu124
154
+ - Datasets 3.0.1
155
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b75e0eff986cb2cd8b9c71d8ac505c21e218f488effea672167258e6fd1a4302
3
+ size 84047370