--- library_name: peft license: apache-2.0 base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 tags: - axolotl - generated_from_trainer model-index: - name: cce5a60b-b1b2-4b78-ab01-79a9c40de698 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2a278dad8a2f879c_train_data.json ds_type: json format: custom path: /workspace/input_data/2a278dad8a2f879c_train_data.json type: field_instruction: track_id field_output: track_genre format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: 25 eval_table_size: null flash_attention: false fp16: true fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: false hub_model_id: fedovtt/cce5a60b-b1b2-4b78-ab01-79a9c40de698 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 74GiB max_steps: 75 micro_batch_size: 2 mlflow_experiment_name: /tmp/2a278dad8a2f879c_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 25 save_strategy: steps sequence_len: 2048 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: cce5a60b-b1b2-4b78-ab01-79a9c40de698 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: cce5a60b-b1b2-4b78-ab01-79a9c40de698 warmup_ratio: 0.05 weight_decay: 0.01 xformers_attention: true ```

# cce5a60b-b1b2-4b78-ab01-79a9c40de698 This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7009 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 3 - training_steps: 75 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 8.1636 | 0.0001 | 1 | 8.6717 | | 2.1479 | 0.0037 | 25 | 2.0393 | | 1.6438 | 0.0074 | 50 | 1.7859 | | 1.5994 | 0.0111 | 75 | 1.7009 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1