--- license: llama3.1 library_name: peft tags: - axolotl - generated_from_trainer base_model: meta-llama/Llama-3.1-8B-Instruct model-index: - name: llama-3.1-8B-instruct-overall results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: meta-llama/Llama-3.1-8B-Instruct model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: true load_in_4bit: false strict: false datasets: - path: data.jsonl ds_type: json type: alpaca dataset_prepared_path: val_set_size: 0.05 output_dir: ./outputs/lora-out hub_model_id: femT-data/llama-3.1-8B-instruct-overall deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json sequence_len: 4096 sample_packing: false pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: gradient_accumulation_steps: 4 micro_batch_size: 4 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true s2_attention: warmup_steps: 10 evals_per_epoch: 1 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: <|end_of_text|> ```

# llama-3.1-8B-instruct-overall This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3622 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.5302 | 0.8889 | 6 | 0.3622 | ### Framework versions - PEFT 0.11.1 - Transformers 4.43.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1