File size: 2,052 Bytes
ea144f2
 
e500664
 
ea144f2
 
 
 
 
 
 
e500664
 
ea144f2
 
 
 
 
e500664
 
ea144f2
 
 
 
e500664
ea144f2
e500664
ea144f2
e500664
ea144f2
 
e500664
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea144f2
 
e500664
 
 
ea144f2
e500664
ea144f2
e500664
 
 
 
 
 
 
ea144f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
base_model:
- Meta-Llama-3-8B-Instruct
- Llama-3-8B-Instruct-Coder
license: apache-2.0
tags:
- moe
- frankenmoe
- merge
- mergekit
- lazymergekit
- Meta-Llama-3-8B-Instruct
- Llama-3-8B-Instruct-Coder
---

# QwenMoEAriel

QwenMoEAriel is a Mixture of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [Meta-Llama-3-8B-Instruct](https://huggingface.co/Meta-Llama-3-8B-Instruct)
* [Llama-3-8B-Instruct-Coder](https://huggingface.co/Llama-3-8B-Instruct-Coder)

## 🧩 Configuration

```yaml
base_model: Meta-Llama-3-8B-Instruct
experts:
  - source_model: Meta-Llama-3-8B-Instruct
    positive_prompts:
    - "explain"
    - "chat"
    - "assistant"
    - "think"
    - "roleplay"
    - "versatile"
    - "helpful"
    - "factual"
    - "integrated"
    - "adaptive"
    - "comprehensive"
    - "balanced"
    negative_prompts:
    - "specialized"
    - "narrow"
    - "focused"
    - "limited"
    - "specific"
  - source_model: Llama-3-8B-Instruct-Coder
    positive_prompts:
    - "python"
    - "math"
    - "solve"
    - "code"
    - "programming"
    - "javascript"
    - "algorithm"
    - "factual"
    negative_prompts:
    - "sorry"
    - "cannot"
    - "concise"
    - "imaginative"
    - "creative"
```

## 💻 Usage

```python
!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "femiari/QwenMoEAriel"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```