fermaat commited on
Commit
8d7582c
1 Parent(s): 8c13ec5

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 2275.50 +/- 137.45
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc2675e6eca33cf2ad67435804c63acc0b7618c5771eba7c1c26072dcc7fa79e
3
+ size 129259
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1ae2251ca0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1ae2251d30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1ae2251dc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1ae2251e50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f1ae2251ee0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f1ae2251f70>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1ae2256040>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1ae22560d0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f1ae2256160>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1ae22561f0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1ae2256280>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1ae2256310>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f1ae224e600>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1675965857742763064,
68
+ "learning_rate": 0.0007,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOXJez7eDYm/O7bfPqeB5j+sebi+gDHXPghiar62kAW/U4eKPobqkz+Saxu/WO2evu+alz2imMM/YeyyPqH55D+UucA/7msbvsADhb5Q6vG9eqVrv6JqpD7xLPs+/OCcPykRpb9nO/4+oEbLPul1Mz8kJ4M+vb6pParGGz+FUwVArwtKvSe9Gb4vK6C9kPaavy4nQT/Ybzs/TQdaPxIATj+qZyw9csPzv6oXMD+lD6G/i9GovSjm4L9KEC0/5dELQCTjWb8y0T+/hXpAv/MrBsBng0Y/Zzv+PqBGyz50l7a/pCO5PptWpL5Suy8/bzPnP3Z51D4eTrG/nevKPg3S3r4M1F8/wlu7v4AVIj/e7zG/AjWrv4WJJz+ZB7G+f5oaPrNhAL7bcmq/zQzqPkDxJkD6Xyu/ziu5vZML/L7QtN0/Z4NGP9/jAMCgRss+dJe2v2lTVj9vGYM9jY8dP5Vqwj+m4QM+yVooPzxL2r5Hk7m/1JSDP0H1L771TqE/zW84P5pJab56qxvAc6AWP1q3zr9c+ao9WkwKwH09Kj47Mbw/FsBmvwxVTDyZtrI+d+S6v2eDRj9nO/4+oEbLPnSXtr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACfSTY0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA0MzoPQAAAABfZeS/AAAAAJRu570AAAAAgSUBQAAAAACrzso9AAAAALj/+j8AAAAAJ7oKvgAAAADfq92/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhNdQNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBo8Bb4AAAAAxm/dvwAAAABxtvE9AAAAAPAD4D8AAAAAtzawvAAAAAALkes/AAAAAIuXzz0AAAAAlo3mvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABw0RDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBhkv+9AAAAAF556L8AAAAAQsoSPQAAAAB5zuQ/AAAAAGbJFb0AAAAAqQXkPwAAAABMZwg7AAAAAC1FAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADlLRU2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARA9/vQAAAABsx+O/AAAAAKkFyj0AAAAARMjYPwAAAAAllOk8AAAAAFNc3j8AAAAAeaPEPQAAAAAcWva/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ5dlQP7N0OMAWyUTegDjAF0lEdArBROdCmdiHV9lChoBkdAnFfT3yqdYmgHTegDaAhHQKwU+NBnjAB1fZQoaAZHQJ4hVfzBhx5oB03oA2gIR0CsFp5PEbYLdX2UKGgGR0CRGoSOzY29aAdN6ANoCEdArB3bst03fnV9lChoBkdAlv52XkYGdWgHTegDaAhHQKwjfGn4wh51fZQoaAZHQKB7uczZYgdoB03oA2gIR0CsJDDSw4bTdX2UKGgGR0Cc6rmrsByTaAdN6ANoCEdArCXONgjQiXV9lChoBkdAklAUMG5c1WgHTegDaAhHQKwrAOKfnOl1fZQoaAZHQJr0XsgMc6xoB03oA2gIR0CsL6bUXpGGdX2UKGgGR0CfdGzvZyuIaAdN6ANoCEdArDBQmgJ1JXV9lChoBkdAnHpS/TLGJmgHTegDaAhHQKwx5MKTjed1fZQoaAZHQJqerf779AJoB03oA2gIR0CsOCBDgIhRdX2UKGgGR0CdCLtqHoHLaAdN6ANoCEdArD6uJ3xFzHV9lChoBkdAnSJJ/PPcBWgHTegDaAhHQKw/XNQCSzR1fZQoaAZHQJX5pqj8DSxoB03oA2gIR0CsQPYnF5v+dX2UKGgGR0CT0PZ39rGjaAdN6ANoCEdArEY3NorWiHV9lChoBkdAnrSorrgO0GgHTegDaAhHQKxK7YNiH7B1fZQoaAZHQJlRmmQ8wHtoB03oA2gIR0CsS56bWmP6dX2UKGgGR0CdZgJBPbfxaAdN6ANoCEdArE084iosI3V9lChoBkdAnOqzzqbBoGgHTegDaAhHQKxSv44ZMtd1fZQoaAZHQJ/yW2H+IdloB03oA2gIR0CsWdKRMewLdX2UKGgGR0CaWaOAy2x6aAdN6ANoCEdArFqxoPCl8HV9lChoBkdAmbBUelsP8WgHTegDaAhHQKxcSgzxgAp1fZQoaAZHQJrsL3JxNqRoB03oA2gIR0CsYXd7v5P/dX2UKGgGR0Cb6CMtbs4UaAdN6ANoCEdArGYw7q6e5HV9lChoBkdAl9UO2mYShGgHTegDaAhHQKxm2s90Rvp1fZQoaAZHQJvA3RJEpiJoB03oA2gIR0CsaGqynk1edX2UKGgGR0CeOR3IdU83aAdN6ANoCEdArG1w2OyVwHV9lChoBkdAoIEYsNDtxGgHTegDaAhHQKxz3iyY5T91fZQoaAZHQJryY0XP7eloB03oA2gIR0CsdPBJiAlOdX2UKGgGR0Ce5FL9deIEaAdN6ANoCEdArHdoy0rsjXV9lChoBkdAnJRZ4rz5GmgHTegDaAhHQKx8jC4SYgJ1fZQoaAZHQJujgwM6RyRoB03oA2gIR0CsgT/m9xp+dX2UKGgGR0ChL1PugHu7aAdN6ANoCEdArIHpCpm29nV9lChoBkdAn7zqisXBQGgHTegDaAhHQKyDhAeq7yx1fZQoaAZHQJyblBt1p0xoB03oA2gIR0CsiRwJHAh0dX2UKGgGR0CgVySmZVn3aAdN6ANoCEdArJIH/Lkjo3V9lChoBkdAnztVzQu27WgHTegDaAhHQKyTEohIOH51fZQoaAZHQKAe21l5GBpoB03oA2gIR0CslZPcrRShdX2UKGgGR0CGR32Dg62faAdN6ANoCEdArJtovDgqE3V9lChoBkdAoXCC0fHPvGgHTegDaAhHQKygO+W4Vh11fZQoaAZHQJ77WV+qioNoB03oA2gIR0CsoO3solUqdX2UKGgGR0CbEFnoxHoYaAdN6ANoCEdArKKKS9ugpXV9lChoBkdAnvLALVnVXmgHTegDaAhHQKynmhdt2s91fZQoaAZHQKCaO7HyVfNoB03oA2gIR0CsrIZU96kZdX2UKGgGR0CDmqSElE7XaAdN6ANoCEdArK18awUxmHV9lChoBkdAoWR/In0CimgHTegDaAhHQKyv7J+UhV51fZQoaAZHQKDKSEwnH/9oB03oA2gIR0CstsBE0BOpdX2UKGgGR0ChnqdoWYWtaAdN6ANoCEdArLtm09hZyXV9lChoBkdAoTWic0+C9WgHTegDaAhHQKy8E5mRNh51fZQoaAZHQKJYF1RLsa9oB03oA2gIR0CsvbFUhmoSdX2UKGgGR0ChC0f7JnxsaAdN6ANoCEdArMLWo3rD63V9lChoBkdAlxqBhYvFnGgHTegDaAhHQKzHis6JZW91fZQoaAZHQJj1jQmeDnNoB03oA2gIR0CsyDgfEGaAdX2UKGgGR0CiIebZezD5aAdN6ANoCEdArMpd6ol2NnV9lChoBkdAmKocOoYNzGgHTegDaAhHQKzR8ydnTRZ1fZQoaAZHQKB1Q2Hck+poB03oA2gIR0Cs1oAiNbTudX2UKGgGR0Cg/qeZXuE3aAdN6ANoCEdArNcpbILgGnV9lChoBkdAoXmoo9cKPWgHTegDaAhHQKzYtWUbDMx1fZQoaAZHQKDXnWHUMG5oB03oA2gIR0Cs3fLm6oVEdX2UKGgGR0CdYJkY4yXVaAdN6ANoCEdArOKKASWZ7XV9lChoBkdAodORFb3XZ2gHTegDaAhHQKzjNArQPZt1fZQoaAZHQKCdHH7P6bhoB03oA2gIR0Cs5MVkDp1SdX2UKGgGR0Cd54HskY4yaAdN6ANoCEdArOvts1sLv3V9lChoBkdAny+wTh5xBGgHTegDaAhHQKzxZ6yB06p1fZQoaAZHQKINnvDxb0RoB03oA2gIR0Cs8hMcIZ62dX2UKGgGR0CfU7hAWzniaAdN6ANoCEdArPO2WhRIjHV9lChoBkdAn2VWRq46O2gHTegDaAhHQKz40LMLWqd1fZQoaAZHQJqobo2XLNhoB03oA2gIR0Cs/Y5W7voedX2UKGgGR0CLFPc6eXiSaAdN6ANoCEdArP5AyRB/qnV9lChoBkdAn3cbIPsiS2gHTegDaAhHQKz/1zbvgFZ1fZQoaAZHQJ/hK5AhStNoB03oA2gIR0CtBg4+0PYndX2UKGgGR0CdXf0j1PFeaAdN6ANoCEdArQyv/DLr5nV9lChoBkdAoBFq0lZ5iWgHTegDaAhHQK0NVo+wC8x1fZQoaAZHQJ+MsjGDL8toB03oA2gIR0CtDus85jpcdX2UKGgGR0ChHWDmr8ziaAdN6ANoCEdArRPwwEhaDHV9lChoBkdAod6s+9rXUmgHTegDaAhHQK0YrTl1bJR1fZQoaAZHQKCurwsoUi9oB03oA2gIR0CtGWAood+5dX2UKGgGR0CcVkLh73PBaAdN6ANoCEdArRsGX9itrHV9lChoBkdAoU+mez2OAGgHTegDaAhHQK0gUpZOi351fZQoaAZHQKDBMavzOHFoB03oA2gIR0CtJ1D4QBgedX2UKGgGR0Chv5h3JPqLaAdN6ANoCEdArShpzo2XLXV9lChoBkdAlW7lNg0CR2gHTegDaAhHQK0qDe9i+cp1fZQoaAZHQKBwewDeTFFoB03oA2gIR0CtL1PboKUndX2UKGgGR0ChNP5Jsfq5aAdN6ANoCEdArTQOmk30gHV9lChoBkdAm6zWjGkvb2gHTegDaAhHQK00vYnv2Gt1fZQoaAZHQKFvPeAuqWFoB03oA2gIR0CtNmC5uqFRdX2UKGgGR0CAo3tIkJKKaAdN6ANoCEdArTuvTqjaf3V9lChoBkdAmmTHQY1pCmgHTegDaAhHQK1CS3jMmnh1fZQoaAZHQKLul1WbPQhoB03oA2gIR0CtQ1nGKhtcdX2UKGgGR0ChOD7lJYknaAdN6ANoCEdArUXHwb2lEnV9lChoBkdAodyGDYh+v2gHTegDaAhHQK1K8PEKmbd1fZQoaAZHQKDpCMjNY8xoB03oA2gIR0CtT6Z1V5rydX2UKGgGR0CcKM07r9l3aAdN6ANoCEdArVBVgF5fMXV9lChoBkdAoNWr5uZTh2gHTegDaAhHQK1R7kFwDNh1fZQoaAZHQKEwIOtGNJhoB03oA2gIR0CtV0nbAUL2dX2UKGgGR0Cdr5t6ol2NaAdN6ANoCEdArV27RjSXt3V9lChoBkdAocbZeb/ff2gHTegDaAhHQK1e2HO8kD91fZQoaAZHQKCVzDP4VRFoB03oA2gIR0CtYX4DTz/ZdX2UKGgGR0CgEHzxPO6eaAdN6ANoCEdArWdiRW912nVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.98,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:82327bd04bf21c858cd253819ca5a5ed7b6f3150d82e33004724160cc646b18b
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:625e8716148317995ab10abf8603213e0474efe3e748546c00b42375567b3c97
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1ae2251ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1ae2251d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1ae2251dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1ae2251e50>", "_build": "<function ActorCriticPolicy._build at 0x7f1ae2251ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f1ae2251f70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1ae2256040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1ae22560d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1ae2256160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1ae22561f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1ae2256280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1ae2256310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1ae224e600>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675965857742763064, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOXJez7eDYm/O7bfPqeB5j+sebi+gDHXPghiar62kAW/U4eKPobqkz+Saxu/WO2evu+alz2imMM/YeyyPqH55D+UucA/7msbvsADhb5Q6vG9eqVrv6JqpD7xLPs+/OCcPykRpb9nO/4+oEbLPul1Mz8kJ4M+vb6pParGGz+FUwVArwtKvSe9Gb4vK6C9kPaavy4nQT/Ybzs/TQdaPxIATj+qZyw9csPzv6oXMD+lD6G/i9GovSjm4L9KEC0/5dELQCTjWb8y0T+/hXpAv/MrBsBng0Y/Zzv+PqBGyz50l7a/pCO5PptWpL5Suy8/bzPnP3Z51D4eTrG/nevKPg3S3r4M1F8/wlu7v4AVIj/e7zG/AjWrv4WJJz+ZB7G+f5oaPrNhAL7bcmq/zQzqPkDxJkD6Xyu/ziu5vZML/L7QtN0/Z4NGP9/jAMCgRss+dJe2v2lTVj9vGYM9jY8dP5Vqwj+m4QM+yVooPzxL2r5Hk7m/1JSDP0H1L771TqE/zW84P5pJab56qxvAc6AWP1q3zr9c+ao9WkwKwH09Kj47Mbw/FsBmvwxVTDyZtrI+d+S6v2eDRj9nO/4+oEbLPnSXtr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACfSTY0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA0MzoPQAAAABfZeS/AAAAAJRu570AAAAAgSUBQAAAAACrzso9AAAAALj/+j8AAAAAJ7oKvgAAAADfq92/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhNdQNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBo8Bb4AAAAAxm/dvwAAAABxtvE9AAAAAPAD4D8AAAAAtzawvAAAAAALkes/AAAAAIuXzz0AAAAAlo3mvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABw0RDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBhkv+9AAAAAF556L8AAAAAQsoSPQAAAAB5zuQ/AAAAAGbJFb0AAAAAqQXkPwAAAABMZwg7AAAAAC1FAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADlLRU2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARA9/vQAAAABsx+O/AAAAAKkFyj0AAAAARMjYPwAAAAAllOk8AAAAAFNc3j8AAAAAeaPEPQAAAAAcWva/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ5dlQP7N0OMAWyUTegDjAF0lEdArBROdCmdiHV9lChoBkdAnFfT3yqdYmgHTegDaAhHQKwU+NBnjAB1fZQoaAZHQJ4hVfzBhx5oB03oA2gIR0CsFp5PEbYLdX2UKGgGR0CRGoSOzY29aAdN6ANoCEdArB3bst03fnV9lChoBkdAlv52XkYGdWgHTegDaAhHQKwjfGn4wh51fZQoaAZHQKB7uczZYgdoB03oA2gIR0CsJDDSw4bTdX2UKGgGR0Cc6rmrsByTaAdN6ANoCEdArCXONgjQiXV9lChoBkdAklAUMG5c1WgHTegDaAhHQKwrAOKfnOl1fZQoaAZHQJr0XsgMc6xoB03oA2gIR0CsL6bUXpGGdX2UKGgGR0CfdGzvZyuIaAdN6ANoCEdArDBQmgJ1JXV9lChoBkdAnHpS/TLGJmgHTegDaAhHQKwx5MKTjed1fZQoaAZHQJqerf779AJoB03oA2gIR0CsOCBDgIhRdX2UKGgGR0CdCLtqHoHLaAdN6ANoCEdArD6uJ3xFzHV9lChoBkdAnSJJ/PPcBWgHTegDaAhHQKw/XNQCSzR1fZQoaAZHQJX5pqj8DSxoB03oA2gIR0CsQPYnF5v+dX2UKGgGR0CT0PZ39rGjaAdN6ANoCEdArEY3NorWiHV9lChoBkdAnrSorrgO0GgHTegDaAhHQKxK7YNiH7B1fZQoaAZHQJlRmmQ8wHtoB03oA2gIR0CsS56bWmP6dX2UKGgGR0CdZgJBPbfxaAdN6ANoCEdArE084iosI3V9lChoBkdAnOqzzqbBoGgHTegDaAhHQKxSv44ZMtd1fZQoaAZHQJ/yW2H+IdloB03oA2gIR0CsWdKRMewLdX2UKGgGR0CaWaOAy2x6aAdN6ANoCEdArFqxoPCl8HV9lChoBkdAmbBUelsP8WgHTegDaAhHQKxcSgzxgAp1fZQoaAZHQJrsL3JxNqRoB03oA2gIR0CsYXd7v5P/dX2UKGgGR0Cb6CMtbs4UaAdN6ANoCEdArGYw7q6e5HV9lChoBkdAl9UO2mYShGgHTegDaAhHQKxm2s90Rvp1fZQoaAZHQJvA3RJEpiJoB03oA2gIR0CsaGqynk1edX2UKGgGR0CeOR3IdU83aAdN6ANoCEdArG1w2OyVwHV9lChoBkdAoIEYsNDtxGgHTegDaAhHQKxz3iyY5T91fZQoaAZHQJryY0XP7eloB03oA2gIR0CsdPBJiAlOdX2UKGgGR0Ce5FL9deIEaAdN6ANoCEdArHdoy0rsjXV9lChoBkdAnJRZ4rz5GmgHTegDaAhHQKx8jC4SYgJ1fZQoaAZHQJujgwM6RyRoB03oA2gIR0CsgT/m9xp+dX2UKGgGR0ChL1PugHu7aAdN6ANoCEdArIHpCpm29nV9lChoBkdAn7zqisXBQGgHTegDaAhHQKyDhAeq7yx1fZQoaAZHQJyblBt1p0xoB03oA2gIR0CsiRwJHAh0dX2UKGgGR0CgVySmZVn3aAdN6ANoCEdArJIH/Lkjo3V9lChoBkdAnztVzQu27WgHTegDaAhHQKyTEohIOH51fZQoaAZHQKAe21l5GBpoB03oA2gIR0CslZPcrRShdX2UKGgGR0CGR32Dg62faAdN6ANoCEdArJtovDgqE3V9lChoBkdAoXCC0fHPvGgHTegDaAhHQKygO+W4Vh11fZQoaAZHQJ77WV+qioNoB03oA2gIR0CsoO3solUqdX2UKGgGR0CbEFnoxHoYaAdN6ANoCEdArKKKS9ugpXV9lChoBkdAnvLALVnVXmgHTegDaAhHQKynmhdt2s91fZQoaAZHQKCaO7HyVfNoB03oA2gIR0CsrIZU96kZdX2UKGgGR0CDmqSElE7XaAdN6ANoCEdArK18awUxmHV9lChoBkdAoWR/In0CimgHTegDaAhHQKyv7J+UhV51fZQoaAZHQKDKSEwnH/9oB03oA2gIR0CstsBE0BOpdX2UKGgGR0ChnqdoWYWtaAdN6ANoCEdArLtm09hZyXV9lChoBkdAoTWic0+C9WgHTegDaAhHQKy8E5mRNh51fZQoaAZHQKJYF1RLsa9oB03oA2gIR0CsvbFUhmoSdX2UKGgGR0ChC0f7JnxsaAdN6ANoCEdArMLWo3rD63V9lChoBkdAlxqBhYvFnGgHTegDaAhHQKzHis6JZW91fZQoaAZHQJj1jQmeDnNoB03oA2gIR0CsyDgfEGaAdX2UKGgGR0CiIebZezD5aAdN6ANoCEdArMpd6ol2NnV9lChoBkdAmKocOoYNzGgHTegDaAhHQKzR8ydnTRZ1fZQoaAZHQKB1Q2Hck+poB03oA2gIR0Cs1oAiNbTudX2UKGgGR0Cg/qeZXuE3aAdN6ANoCEdArNcpbILgGnV9lChoBkdAoXmoo9cKPWgHTegDaAhHQKzYtWUbDMx1fZQoaAZHQKDXnWHUMG5oB03oA2gIR0Cs3fLm6oVEdX2UKGgGR0CdYJkY4yXVaAdN6ANoCEdArOKKASWZ7XV9lChoBkdAodORFb3XZ2gHTegDaAhHQKzjNArQPZt1fZQoaAZHQKCdHH7P6bhoB03oA2gIR0Cs5MVkDp1SdX2UKGgGR0Cd54HskY4yaAdN6ANoCEdArOvts1sLv3V9lChoBkdAny+wTh5xBGgHTegDaAhHQKzxZ6yB06p1fZQoaAZHQKINnvDxb0RoB03oA2gIR0Cs8hMcIZ62dX2UKGgGR0CfU7hAWzniaAdN6ANoCEdArPO2WhRIjHV9lChoBkdAn2VWRq46O2gHTegDaAhHQKz40LMLWqd1fZQoaAZHQJqobo2XLNhoB03oA2gIR0Cs/Y5W7voedX2UKGgGR0CLFPc6eXiSaAdN6ANoCEdArP5AyRB/qnV9lChoBkdAn3cbIPsiS2gHTegDaAhHQKz/1zbvgFZ1fZQoaAZHQJ/hK5AhStNoB03oA2gIR0CtBg4+0PYndX2UKGgGR0CdXf0j1PFeaAdN6ANoCEdArQyv/DLr5nV9lChoBkdAoBFq0lZ5iWgHTegDaAhHQK0NVo+wC8x1fZQoaAZHQJ+MsjGDL8toB03oA2gIR0CtDus85jpcdX2UKGgGR0ChHWDmr8ziaAdN6ANoCEdArRPwwEhaDHV9lChoBkdAod6s+9rXUmgHTegDaAhHQK0YrTl1bJR1fZQoaAZHQKCurwsoUi9oB03oA2gIR0CtGWAood+5dX2UKGgGR0CcVkLh73PBaAdN6ANoCEdArRsGX9itrHV9lChoBkdAoU+mez2OAGgHTegDaAhHQK0gUpZOi351fZQoaAZHQKDBMavzOHFoB03oA2gIR0CtJ1D4QBgedX2UKGgGR0Chv5h3JPqLaAdN6ANoCEdArShpzo2XLXV9lChoBkdAlW7lNg0CR2gHTegDaAhHQK0qDe9i+cp1fZQoaAZHQKBwewDeTFFoB03oA2gIR0CtL1PboKUndX2UKGgGR0ChNP5Jsfq5aAdN6ANoCEdArTQOmk30gHV9lChoBkdAm6zWjGkvb2gHTegDaAhHQK00vYnv2Gt1fZQoaAZHQKFvPeAuqWFoB03oA2gIR0CtNmC5uqFRdX2UKGgGR0CAo3tIkJKKaAdN6ANoCEdArTuvTqjaf3V9lChoBkdAmmTHQY1pCmgHTegDaAhHQK1CS3jMmnh1fZQoaAZHQKLul1WbPQhoB03oA2gIR0CtQ1nGKhtcdX2UKGgGR0ChOD7lJYknaAdN6ANoCEdArUXHwb2lEnV9lChoBkdAodyGDYh+v2gHTegDaAhHQK1K8PEKmbd1fZQoaAZHQKDpCMjNY8xoB03oA2gIR0CtT6Z1V5rydX2UKGgGR0CcKM07r9l3aAdN6ANoCEdArVBVgF5fMXV9lChoBkdAoNWr5uZTh2gHTegDaAhHQK1R7kFwDNh1fZQoaAZHQKEwIOtGNJhoB03oA2gIR0CtV0nbAUL2dX2UKGgGR0Cdr5t6ol2NaAdN6ANoCEdArV27RjSXt3V9lChoBkdAocbZeb/ff2gHTegDaAhHQK1e2HO8kD91fZQoaAZHQKCVzDP4VRFoB03oA2gIR0CtYX4DTz/ZdX2UKGgGR0CgEHzxPO6eaAdN6ANoCEdArWdiRW912nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.98, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc2fb252fd6a4a9cb2654177a48ad0be8530e42c1dda32c306a41031aef60549
3
+ size 1046637
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 2275.4956632515414, "std_reward": 137.44670659932683, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-09T19:06:29.987088"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:014f68c842073873f4507679a4deb8053eb7573dd8b46a403a0c98fda0bb4c35
3
+ size 2136