Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 2275.50 +/- 137.45
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bc2675e6eca33cf2ad67435804c63acc0b7618c5771eba7c1c26072dcc7fa79e
|
3 |
+
size 129259
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f1ae2251ca0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1ae2251d30>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1ae2251dc0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1ae2251e50>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f1ae2251ee0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f1ae2251f70>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1ae2256040>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1ae22560d0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f1ae2256160>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1ae22561f0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1ae2256280>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1ae2256310>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f1ae224e600>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1675965857742763064,
|
68 |
+
"learning_rate": 0.0007,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOXJez7eDYm/O7bfPqeB5j+sebi+gDHXPghiar62kAW/U4eKPobqkz+Saxu/WO2evu+alz2imMM/YeyyPqH55D+UucA/7msbvsADhb5Q6vG9eqVrv6JqpD7xLPs+/OCcPykRpb9nO/4+oEbLPul1Mz8kJ4M+vb6pParGGz+FUwVArwtKvSe9Gb4vK6C9kPaavy4nQT/Ybzs/TQdaPxIATj+qZyw9csPzv6oXMD+lD6G/i9GovSjm4L9KEC0/5dELQCTjWb8y0T+/hXpAv/MrBsBng0Y/Zzv+PqBGyz50l7a/pCO5PptWpL5Suy8/bzPnP3Z51D4eTrG/nevKPg3S3r4M1F8/wlu7v4AVIj/e7zG/AjWrv4WJJz+ZB7G+f5oaPrNhAL7bcmq/zQzqPkDxJkD6Xyu/ziu5vZML/L7QtN0/Z4NGP9/jAMCgRss+dJe2v2lTVj9vGYM9jY8dP5Vqwj+m4QM+yVooPzxL2r5Hk7m/1JSDP0H1L771TqE/zW84P5pJab56qxvAc6AWP1q3zr9c+ao9WkwKwH09Kj47Mbw/FsBmvwxVTDyZtrI+d+S6v2eDRj9nO/4+oEbLPnSXtr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACfSTY0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA0MzoPQAAAABfZeS/AAAAAJRu570AAAAAgSUBQAAAAACrzso9AAAAALj/+j8AAAAAJ7oKvgAAAADfq92/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhNdQNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBo8Bb4AAAAAxm/dvwAAAABxtvE9AAAAAPAD4D8AAAAAtzawvAAAAAALkes/AAAAAIuXzz0AAAAAlo3mvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABw0RDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBhkv+9AAAAAF556L8AAAAAQsoSPQAAAAB5zuQ/AAAAAGbJFb0AAAAAqQXkPwAAAABMZwg7AAAAAC1FAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADlLRU2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARA9/vQAAAABsx+O/AAAAAKkFyj0AAAAARMjYPwAAAAAllOk8AAAAAFNc3j8AAAAAeaPEPQAAAAAcWva/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ5dlQP7N0OMAWyUTegDjAF0lEdArBROdCmdiHV9lChoBkdAnFfT3yqdYmgHTegDaAhHQKwU+NBnjAB1fZQoaAZHQJ4hVfzBhx5oB03oA2gIR0CsFp5PEbYLdX2UKGgGR0CRGoSOzY29aAdN6ANoCEdArB3bst03fnV9lChoBkdAlv52XkYGdWgHTegDaAhHQKwjfGn4wh51fZQoaAZHQKB7uczZYgdoB03oA2gIR0CsJDDSw4bTdX2UKGgGR0Cc6rmrsByTaAdN6ANoCEdArCXONgjQiXV9lChoBkdAklAUMG5c1WgHTegDaAhHQKwrAOKfnOl1fZQoaAZHQJr0XsgMc6xoB03oA2gIR0CsL6bUXpGGdX2UKGgGR0CfdGzvZyuIaAdN6ANoCEdArDBQmgJ1JXV9lChoBkdAnHpS/TLGJmgHTegDaAhHQKwx5MKTjed1fZQoaAZHQJqerf779AJoB03oA2gIR0CsOCBDgIhRdX2UKGgGR0CdCLtqHoHLaAdN6ANoCEdArD6uJ3xFzHV9lChoBkdAnSJJ/PPcBWgHTegDaAhHQKw/XNQCSzR1fZQoaAZHQJX5pqj8DSxoB03oA2gIR0CsQPYnF5v+dX2UKGgGR0CT0PZ39rGjaAdN6ANoCEdArEY3NorWiHV9lChoBkdAnrSorrgO0GgHTegDaAhHQKxK7YNiH7B1fZQoaAZHQJlRmmQ8wHtoB03oA2gIR0CsS56bWmP6dX2UKGgGR0CdZgJBPbfxaAdN6ANoCEdArE084iosI3V9lChoBkdAnOqzzqbBoGgHTegDaAhHQKxSv44ZMtd1fZQoaAZHQJ/yW2H+IdloB03oA2gIR0CsWdKRMewLdX2UKGgGR0CaWaOAy2x6aAdN6ANoCEdArFqxoPCl8HV9lChoBkdAmbBUelsP8WgHTegDaAhHQKxcSgzxgAp1fZQoaAZHQJrsL3JxNqRoB03oA2gIR0CsYXd7v5P/dX2UKGgGR0Cb6CMtbs4UaAdN6ANoCEdArGYw7q6e5HV9lChoBkdAl9UO2mYShGgHTegDaAhHQKxm2s90Rvp1fZQoaAZHQJvA3RJEpiJoB03oA2gIR0CsaGqynk1edX2UKGgGR0CeOR3IdU83aAdN6ANoCEdArG1w2OyVwHV9lChoBkdAoIEYsNDtxGgHTegDaAhHQKxz3iyY5T91fZQoaAZHQJryY0XP7eloB03oA2gIR0CsdPBJiAlOdX2UKGgGR0Ce5FL9deIEaAdN6ANoCEdArHdoy0rsjXV9lChoBkdAnJRZ4rz5GmgHTegDaAhHQKx8jC4SYgJ1fZQoaAZHQJujgwM6RyRoB03oA2gIR0CsgT/m9xp+dX2UKGgGR0ChL1PugHu7aAdN6ANoCEdArIHpCpm29nV9lChoBkdAn7zqisXBQGgHTegDaAhHQKyDhAeq7yx1fZQoaAZHQJyblBt1p0xoB03oA2gIR0CsiRwJHAh0dX2UKGgGR0CgVySmZVn3aAdN6ANoCEdArJIH/Lkjo3V9lChoBkdAnztVzQu27WgHTegDaAhHQKyTEohIOH51fZQoaAZHQKAe21l5GBpoB03oA2gIR0CslZPcrRShdX2UKGgGR0CGR32Dg62faAdN6ANoCEdArJtovDgqE3V9lChoBkdAoXCC0fHPvGgHTegDaAhHQKygO+W4Vh11fZQoaAZHQJ77WV+qioNoB03oA2gIR0CsoO3solUqdX2UKGgGR0CbEFnoxHoYaAdN6ANoCEdArKKKS9ugpXV9lChoBkdAnvLALVnVXmgHTegDaAhHQKynmhdt2s91fZQoaAZHQKCaO7HyVfNoB03oA2gIR0CsrIZU96kZdX2UKGgGR0CDmqSElE7XaAdN6ANoCEdArK18awUxmHV9lChoBkdAoWR/In0CimgHTegDaAhHQKyv7J+UhV51fZQoaAZHQKDKSEwnH/9oB03oA2gIR0CstsBE0BOpdX2UKGgGR0ChnqdoWYWtaAdN6ANoCEdArLtm09hZyXV9lChoBkdAoTWic0+C9WgHTegDaAhHQKy8E5mRNh51fZQoaAZHQKJYF1RLsa9oB03oA2gIR0CsvbFUhmoSdX2UKGgGR0ChC0f7JnxsaAdN6ANoCEdArMLWo3rD63V9lChoBkdAlxqBhYvFnGgHTegDaAhHQKzHis6JZW91fZQoaAZHQJj1jQmeDnNoB03oA2gIR0CsyDgfEGaAdX2UKGgGR0CiIebZezD5aAdN6ANoCEdArMpd6ol2NnV9lChoBkdAmKocOoYNzGgHTegDaAhHQKzR8ydnTRZ1fZQoaAZHQKB1Q2Hck+poB03oA2gIR0Cs1oAiNbTudX2UKGgGR0Cg/qeZXuE3aAdN6ANoCEdArNcpbILgGnV9lChoBkdAoXmoo9cKPWgHTegDaAhHQKzYtWUbDMx1fZQoaAZHQKDXnWHUMG5oB03oA2gIR0Cs3fLm6oVEdX2UKGgGR0CdYJkY4yXVaAdN6ANoCEdArOKKASWZ7XV9lChoBkdAodORFb3XZ2gHTegDaAhHQKzjNArQPZt1fZQoaAZHQKCdHH7P6bhoB03oA2gIR0Cs5MVkDp1SdX2UKGgGR0Cd54HskY4yaAdN6ANoCEdArOvts1sLv3V9lChoBkdAny+wTh5xBGgHTegDaAhHQKzxZ6yB06p1fZQoaAZHQKINnvDxb0RoB03oA2gIR0Cs8hMcIZ62dX2UKGgGR0CfU7hAWzniaAdN6ANoCEdArPO2WhRIjHV9lChoBkdAn2VWRq46O2gHTegDaAhHQKz40LMLWqd1fZQoaAZHQJqobo2XLNhoB03oA2gIR0Cs/Y5W7voedX2UKGgGR0CLFPc6eXiSaAdN6ANoCEdArP5AyRB/qnV9lChoBkdAn3cbIPsiS2gHTegDaAhHQKz/1zbvgFZ1fZQoaAZHQJ/hK5AhStNoB03oA2gIR0CtBg4+0PYndX2UKGgGR0CdXf0j1PFeaAdN6ANoCEdArQyv/DLr5nV9lChoBkdAoBFq0lZ5iWgHTegDaAhHQK0NVo+wC8x1fZQoaAZHQJ+MsjGDL8toB03oA2gIR0CtDus85jpcdX2UKGgGR0ChHWDmr8ziaAdN6ANoCEdArRPwwEhaDHV9lChoBkdAod6s+9rXUmgHTegDaAhHQK0YrTl1bJR1fZQoaAZHQKCurwsoUi9oB03oA2gIR0CtGWAood+5dX2UKGgGR0CcVkLh73PBaAdN6ANoCEdArRsGX9itrHV9lChoBkdAoU+mez2OAGgHTegDaAhHQK0gUpZOi351fZQoaAZHQKDBMavzOHFoB03oA2gIR0CtJ1D4QBgedX2UKGgGR0Chv5h3JPqLaAdN6ANoCEdArShpzo2XLXV9lChoBkdAlW7lNg0CR2gHTegDaAhHQK0qDe9i+cp1fZQoaAZHQKBwewDeTFFoB03oA2gIR0CtL1PboKUndX2UKGgGR0ChNP5Jsfq5aAdN6ANoCEdArTQOmk30gHV9lChoBkdAm6zWjGkvb2gHTegDaAhHQK00vYnv2Gt1fZQoaAZHQKFvPeAuqWFoB03oA2gIR0CtNmC5uqFRdX2UKGgGR0CAo3tIkJKKaAdN6ANoCEdArTuvTqjaf3V9lChoBkdAmmTHQY1pCmgHTegDaAhHQK1CS3jMmnh1fZQoaAZHQKLul1WbPQhoB03oA2gIR0CtQ1nGKhtcdX2UKGgGR0ChOD7lJYknaAdN6ANoCEdArUXHwb2lEnV9lChoBkdAodyGDYh+v2gHTegDaAhHQK1K8PEKmbd1fZQoaAZHQKDpCMjNY8xoB03oA2gIR0CtT6Z1V5rydX2UKGgGR0CcKM07r9l3aAdN6ANoCEdArVBVgF5fMXV9lChoBkdAoNWr5uZTh2gHTegDaAhHQK1R7kFwDNh1fZQoaAZHQKEwIOtGNJhoB03oA2gIR0CtV0nbAUL2dX2UKGgGR0Cdr5t6ol2NaAdN6ANoCEdArV27RjSXt3V9lChoBkdAocbZeb/ff2gHTegDaAhHQK1e2HO8kD91fZQoaAZHQKCVzDP4VRFoB03oA2gIR0CtYX4DTz/ZdX2UKGgGR0CgEHzxPO6eaAdN6ANoCEdArWdiRW912nVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.98,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82327bd04bf21c858cd253819ca5a5ed7b6f3150d82e33004724160cc646b18b
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:625e8716148317995ab10abf8603213e0474efe3e748546c00b42375567b3c97
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1ae2251ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1ae2251d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1ae2251dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1ae2251e50>", "_build": "<function ActorCriticPolicy._build at 0x7f1ae2251ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f1ae2251f70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1ae2256040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1ae22560d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1ae2256160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1ae22561f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1ae2256280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1ae2256310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1ae224e600>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675965857742763064, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOXJez7eDYm/O7bfPqeB5j+sebi+gDHXPghiar62kAW/U4eKPobqkz+Saxu/WO2evu+alz2imMM/YeyyPqH55D+UucA/7msbvsADhb5Q6vG9eqVrv6JqpD7xLPs+/OCcPykRpb9nO/4+oEbLPul1Mz8kJ4M+vb6pParGGz+FUwVArwtKvSe9Gb4vK6C9kPaavy4nQT/Ybzs/TQdaPxIATj+qZyw9csPzv6oXMD+lD6G/i9GovSjm4L9KEC0/5dELQCTjWb8y0T+/hXpAv/MrBsBng0Y/Zzv+PqBGyz50l7a/pCO5PptWpL5Suy8/bzPnP3Z51D4eTrG/nevKPg3S3r4M1F8/wlu7v4AVIj/e7zG/AjWrv4WJJz+ZB7G+f5oaPrNhAL7bcmq/zQzqPkDxJkD6Xyu/ziu5vZML/L7QtN0/Z4NGP9/jAMCgRss+dJe2v2lTVj9vGYM9jY8dP5Vqwj+m4QM+yVooPzxL2r5Hk7m/1JSDP0H1L771TqE/zW84P5pJab56qxvAc6AWP1q3zr9c+ao9WkwKwH09Kj47Mbw/FsBmvwxVTDyZtrI+d+S6v2eDRj9nO/4+oEbLPnSXtr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACfSTY0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA0MzoPQAAAABfZeS/AAAAAJRu570AAAAAgSUBQAAAAACrzso9AAAAALj/+j8AAAAAJ7oKvgAAAADfq92/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhNdQNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBo8Bb4AAAAAxm/dvwAAAABxtvE9AAAAAPAD4D8AAAAAtzawvAAAAAALkes/AAAAAIuXzz0AAAAAlo3mvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABw0RDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBhkv+9AAAAAF556L8AAAAAQsoSPQAAAAB5zuQ/AAAAAGbJFb0AAAAAqQXkPwAAAABMZwg7AAAAAC1FAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADlLRU2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARA9/vQAAAABsx+O/AAAAAKkFyj0AAAAARMjYPwAAAAAllOk8AAAAAFNc3j8AAAAAeaPEPQAAAAAcWva/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ5dlQP7N0OMAWyUTegDjAF0lEdArBROdCmdiHV9lChoBkdAnFfT3yqdYmgHTegDaAhHQKwU+NBnjAB1fZQoaAZHQJ4hVfzBhx5oB03oA2gIR0CsFp5PEbYLdX2UKGgGR0CRGoSOzY29aAdN6ANoCEdArB3bst03fnV9lChoBkdAlv52XkYGdWgHTegDaAhHQKwjfGn4wh51fZQoaAZHQKB7uczZYgdoB03oA2gIR0CsJDDSw4bTdX2UKGgGR0Cc6rmrsByTaAdN6ANoCEdArCXONgjQiXV9lChoBkdAklAUMG5c1WgHTegDaAhHQKwrAOKfnOl1fZQoaAZHQJr0XsgMc6xoB03oA2gIR0CsL6bUXpGGdX2UKGgGR0CfdGzvZyuIaAdN6ANoCEdArDBQmgJ1JXV9lChoBkdAnHpS/TLGJmgHTegDaAhHQKwx5MKTjed1fZQoaAZHQJqerf779AJoB03oA2gIR0CsOCBDgIhRdX2UKGgGR0CdCLtqHoHLaAdN6ANoCEdArD6uJ3xFzHV9lChoBkdAnSJJ/PPcBWgHTegDaAhHQKw/XNQCSzR1fZQoaAZHQJX5pqj8DSxoB03oA2gIR0CsQPYnF5v+dX2UKGgGR0CT0PZ39rGjaAdN6ANoCEdArEY3NorWiHV9lChoBkdAnrSorrgO0GgHTegDaAhHQKxK7YNiH7B1fZQoaAZHQJlRmmQ8wHtoB03oA2gIR0CsS56bWmP6dX2UKGgGR0CdZgJBPbfxaAdN6ANoCEdArE084iosI3V9lChoBkdAnOqzzqbBoGgHTegDaAhHQKxSv44ZMtd1fZQoaAZHQJ/yW2H+IdloB03oA2gIR0CsWdKRMewLdX2UKGgGR0CaWaOAy2x6aAdN6ANoCEdArFqxoPCl8HV9lChoBkdAmbBUelsP8WgHTegDaAhHQKxcSgzxgAp1fZQoaAZHQJrsL3JxNqRoB03oA2gIR0CsYXd7v5P/dX2UKGgGR0Cb6CMtbs4UaAdN6ANoCEdArGYw7q6e5HV9lChoBkdAl9UO2mYShGgHTegDaAhHQKxm2s90Rvp1fZQoaAZHQJvA3RJEpiJoB03oA2gIR0CsaGqynk1edX2UKGgGR0CeOR3IdU83aAdN6ANoCEdArG1w2OyVwHV9lChoBkdAoIEYsNDtxGgHTegDaAhHQKxz3iyY5T91fZQoaAZHQJryY0XP7eloB03oA2gIR0CsdPBJiAlOdX2UKGgGR0Ce5FL9deIEaAdN6ANoCEdArHdoy0rsjXV9lChoBkdAnJRZ4rz5GmgHTegDaAhHQKx8jC4SYgJ1fZQoaAZHQJujgwM6RyRoB03oA2gIR0CsgT/m9xp+dX2UKGgGR0ChL1PugHu7aAdN6ANoCEdArIHpCpm29nV9lChoBkdAn7zqisXBQGgHTegDaAhHQKyDhAeq7yx1fZQoaAZHQJyblBt1p0xoB03oA2gIR0CsiRwJHAh0dX2UKGgGR0CgVySmZVn3aAdN6ANoCEdArJIH/Lkjo3V9lChoBkdAnztVzQu27WgHTegDaAhHQKyTEohIOH51fZQoaAZHQKAe21l5GBpoB03oA2gIR0CslZPcrRShdX2UKGgGR0CGR32Dg62faAdN6ANoCEdArJtovDgqE3V9lChoBkdAoXCC0fHPvGgHTegDaAhHQKygO+W4Vh11fZQoaAZHQJ77WV+qioNoB03oA2gIR0CsoO3solUqdX2UKGgGR0CbEFnoxHoYaAdN6ANoCEdArKKKS9ugpXV9lChoBkdAnvLALVnVXmgHTegDaAhHQKynmhdt2s91fZQoaAZHQKCaO7HyVfNoB03oA2gIR0CsrIZU96kZdX2UKGgGR0CDmqSElE7XaAdN6ANoCEdArK18awUxmHV9lChoBkdAoWR/In0CimgHTegDaAhHQKyv7J+UhV51fZQoaAZHQKDKSEwnH/9oB03oA2gIR0CstsBE0BOpdX2UKGgGR0ChnqdoWYWtaAdN6ANoCEdArLtm09hZyXV9lChoBkdAoTWic0+C9WgHTegDaAhHQKy8E5mRNh51fZQoaAZHQKJYF1RLsa9oB03oA2gIR0CsvbFUhmoSdX2UKGgGR0ChC0f7JnxsaAdN6ANoCEdArMLWo3rD63V9lChoBkdAlxqBhYvFnGgHTegDaAhHQKzHis6JZW91fZQoaAZHQJj1jQmeDnNoB03oA2gIR0CsyDgfEGaAdX2UKGgGR0CiIebZezD5aAdN6ANoCEdArMpd6ol2NnV9lChoBkdAmKocOoYNzGgHTegDaAhHQKzR8ydnTRZ1fZQoaAZHQKB1Q2Hck+poB03oA2gIR0Cs1oAiNbTudX2UKGgGR0Cg/qeZXuE3aAdN6ANoCEdArNcpbILgGnV9lChoBkdAoXmoo9cKPWgHTegDaAhHQKzYtWUbDMx1fZQoaAZHQKDXnWHUMG5oB03oA2gIR0Cs3fLm6oVEdX2UKGgGR0CdYJkY4yXVaAdN6ANoCEdArOKKASWZ7XV9lChoBkdAodORFb3XZ2gHTegDaAhHQKzjNArQPZt1fZQoaAZHQKCdHH7P6bhoB03oA2gIR0Cs5MVkDp1SdX2UKGgGR0Cd54HskY4yaAdN6ANoCEdArOvts1sLv3V9lChoBkdAny+wTh5xBGgHTegDaAhHQKzxZ6yB06p1fZQoaAZHQKINnvDxb0RoB03oA2gIR0Cs8hMcIZ62dX2UKGgGR0CfU7hAWzniaAdN6ANoCEdArPO2WhRIjHV9lChoBkdAn2VWRq46O2gHTegDaAhHQKz40LMLWqd1fZQoaAZHQJqobo2XLNhoB03oA2gIR0Cs/Y5W7voedX2UKGgGR0CLFPc6eXiSaAdN6ANoCEdArP5AyRB/qnV9lChoBkdAn3cbIPsiS2gHTegDaAhHQKz/1zbvgFZ1fZQoaAZHQJ/hK5AhStNoB03oA2gIR0CtBg4+0PYndX2UKGgGR0CdXf0j1PFeaAdN6ANoCEdArQyv/DLr5nV9lChoBkdAoBFq0lZ5iWgHTegDaAhHQK0NVo+wC8x1fZQoaAZHQJ+MsjGDL8toB03oA2gIR0CtDus85jpcdX2UKGgGR0ChHWDmr8ziaAdN6ANoCEdArRPwwEhaDHV9lChoBkdAod6s+9rXUmgHTegDaAhHQK0YrTl1bJR1fZQoaAZHQKCurwsoUi9oB03oA2gIR0CtGWAood+5dX2UKGgGR0CcVkLh73PBaAdN6ANoCEdArRsGX9itrHV9lChoBkdAoU+mez2OAGgHTegDaAhHQK0gUpZOi351fZQoaAZHQKDBMavzOHFoB03oA2gIR0CtJ1D4QBgedX2UKGgGR0Chv5h3JPqLaAdN6ANoCEdArShpzo2XLXV9lChoBkdAlW7lNg0CR2gHTegDaAhHQK0qDe9i+cp1fZQoaAZHQKBwewDeTFFoB03oA2gIR0CtL1PboKUndX2UKGgGR0ChNP5Jsfq5aAdN6ANoCEdArTQOmk30gHV9lChoBkdAm6zWjGkvb2gHTegDaAhHQK00vYnv2Gt1fZQoaAZHQKFvPeAuqWFoB03oA2gIR0CtNmC5uqFRdX2UKGgGR0CAo3tIkJKKaAdN6ANoCEdArTuvTqjaf3V9lChoBkdAmmTHQY1pCmgHTegDaAhHQK1CS3jMmnh1fZQoaAZHQKLul1WbPQhoB03oA2gIR0CtQ1nGKhtcdX2UKGgGR0ChOD7lJYknaAdN6ANoCEdArUXHwb2lEnV9lChoBkdAodyGDYh+v2gHTegDaAhHQK1K8PEKmbd1fZQoaAZHQKDpCMjNY8xoB03oA2gIR0CtT6Z1V5rydX2UKGgGR0CcKM07r9l3aAdN6ANoCEdArVBVgF5fMXV9lChoBkdAoNWr5uZTh2gHTegDaAhHQK1R7kFwDNh1fZQoaAZHQKEwIOtGNJhoB03oA2gIR0CtV0nbAUL2dX2UKGgGR0Cdr5t6ol2NaAdN6ANoCEdArV27RjSXt3V9lChoBkdAocbZeb/ff2gHTegDaAhHQK1e2HO8kD91fZQoaAZHQKCVzDP4VRFoB03oA2gIR0CtYX4DTz/ZdX2UKGgGR0CgEHzxPO6eaAdN6ANoCEdArWdiRW912nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.98, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fc2fb252fd6a4a9cb2654177a48ad0be8530e42c1dda32c306a41031aef60549
|
3 |
+
size 1046637
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 2275.4956632515414, "std_reward": 137.44670659932683, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-09T19:06:29.987088"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:014f68c842073873f4507679a4deb8053eb7573dd8b46a403a0c98fda0bb4c35
|
3 |
+
size 2136
|