fermaat commited on
Commit
32a8a0f
1 Parent(s): e721f8f

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -3.20 +/- 0.66
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:44a67e791f5893523d5c0b747c486a5cb76e072738980d6431c72385b983778a
3
+ size 107987
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f9da9c16ca0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f9da9c0de40>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1675972762660495709,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAR9XoPhBDRTxOKgg/R9XoPhBDRTxOKgg/R9XoPhBDRTxOKgg/R9XoPhBDRTxOKgg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAArTeLP4rJpb8wCJs/NL9GP5+Utb/L++09GrErvx3s5z7tpNa/cEpgPxS7wL/mBjE/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABH1eg+EENFPE4qCD+7oFI8TmplOxqVITpH1eg+EENFPE4qCD+7oFI8TmplOxqVITpH1eg+EENFPE4qCD+7oFI8TmplOxqVITpH1eg+EENFPE4qCD+7oFI8TmplOxqVITqUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.45475218 0.01203991 0.5318955 ]\n [0.45475218 0.01203991 0.5318955 ]\n [0.45475218 0.01203991 0.5318955 ]\n [0.45475218 0.01203991 0.5318955 ]]",
60
+ "desired_goal": "[[ 1.0876366 -1.295213 1.2111874 ]\n [ 0.776355 -1.418598 0.11620291]\n [-0.6706711 0.45297328 -1.6769081 ]\n [ 0.8761358 -1.5057092 0.6915115 ]]",
61
+ "observation": "[[0.45475218 0.01203991 0.5318955 0.0128557 0.0035006 0.00061639]\n [0.45475218 0.01203991 0.5318955 0.0128557 0.0035006 0.00061639]\n [0.45475218 0.01203991 0.5318955 0.0128557 0.0035006 0.00061639]\n [0.45475218 0.01203991 0.5318955 0.0128557 0.0035006 0.00061639]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAk2bCPVYB2T10zIk+LDO1PRe6/73rfWU+e+GmPd9oKD2qaZk+jK3xPQNPf70xHZw9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.09492221 0.10595958 0.26913798]\n [ 0.08847651 -0.12486666 0.22411315]\n [ 0.08148476 0.04111564 0.29963428]\n [ 0.1180068 -0.06233121 0.07622755]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIM4l6wafZBMCUhpRSlIwBbJRLMowBdJRHQKgp9V/c32p1fZQoaAZoCWgPQwjvOhvyz2wQwJSGlFKUaBVLMmgWR0CoKbZuQ6p6dX2UKGgGaAloD0MIWTMyyF1ECcCUhpRSlGgVSzJoFkdAqCl4QUYbbXV9lChoBmgJaA9DCANC6+HLZALAlIaUUpRoFUsyaBZHQKgpOKAJ9iN1fZQoaAZoCWgPQwg2zqYjgHsHwJSGlFKUaBVLMmgWR0CoKuQ/5ckddX2UKGgGaAloD0MI3IR7Zd4qBsCUhpRSlGgVSzJoFkdAqCqlbmlqJ3V9lChoBmgJaA9DCOhPG9XpQA/AlIaUUpRoFUsyaBZHQKgqZ0uDjBF1fZQoaAZoCWgPQwjWjAxyF7EQwJSGlFKUaBVLMmgWR0CoKie3pfQbdX2UKGgGaAloD0MI8l1KXTIuDMCUhpRSlGgVSzJoFkdAqCveXJHRTnV9lChoBmgJaA9DCDNwQEtX0AzAlIaUUpRoFUsyaBZHQKgrn3fyf+V1fZQoaAZoCWgPQwhTliGOdfEFwJSGlFKUaBVLMmgWR0CoK2FCb+cZdX2UKGgGaAloD0MIjdE6qpqgBMCUhpRSlGgVSzJoFkdAqCshcHGCI3V9lChoBmgJaA9DCOyFAraDsQbAlIaUUpRoFUsyaBZHQKgsy6GQCCB1fZQoaAZoCWgPQwiFRNrGnxgQwJSGlFKUaBVLMmgWR0CoLIy4e9zwdX2UKGgGaAloD0MIWDm0yHYeAsCUhpRSlGgVSzJoFkdAqCxOdRR/E3V9lChoBmgJaA9DCP63kh0bYQ/AlIaUUpRoFUsyaBZHQKgsDq/M4cZ1fZQoaAZoCWgPQwjohTsXRloHwJSGlFKUaBVLMmgWR0CoLb8V58jSdX2UKGgGaAloD0MIzNB4IoizBcCUhpRSlGgVSzJoFkdAqC2AMQVbinV9lChoBmgJaA9DCKOVe4FZQQbAlIaUUpRoFUsyaBZHQKgtQfms/6h1fZQoaAZoCWgPQwgwR4/f22QRwJSGlFKUaBVLMmgWR0CoLQIm5UcXdX2UKGgGaAloD0MIblD7rZ3oD8CUhpRSlGgVSzJoFkdAqC6zXL/0d3V9lChoBmgJaA9DCCEeiZen0w3AlIaUUpRoFUsyaBZHQKgudLjghr51fZQoaAZoCWgPQwjyW3Sy1BoLwJSGlFKUaBVLMmgWR0CoLjaYVqN7dX2UKGgGaAloD0MIjA+zl23nAcCUhpRSlGgVSzJoFkdAqC325paibnV9lChoBmgJaA9DCJbtQ95y9Q7AlIaUUpRoFUsyaBZHQKgvod1dPcl1fZQoaAZoCWgPQwjt0obD0vAQwJSGlFKUaBVLMmgWR0CoL2LpJPIodX2UKGgGaAloD0MIIuAQqtSMAMCUhpRSlGgVSzJoFkdAqC8kp9ZzP3V9lChoBmgJaA9DCKXXZmMlxgPAlIaUUpRoFUsyaBZHQKgu5OVPepJ1fZQoaAZoCWgPQwgPmfIhqLoPwJSGlFKUaBVLMmgWR0CoMJ68pTdddX2UKGgGaAloD0MInwWhvI+jAcCUhpRSlGgVSzJoFkdAqDBgqy4WlHV9lChoBmgJaA9DCJzdWibDMQPAlIaUUpRoFUsyaBZHQKgwIt4A0bd1fZQoaAZoCWgPQwjXvRWJCeoNwJSGlFKUaBVLMmgWR0CoL+OkDZDidX2UKGgGaAloD0MIvaYHBaXoAsCUhpRSlGgVSzJoFkdAqDIaE6DGtXV9lChoBmgJaA9DCHJuE+6VGQvAlIaUUpRoFUsyaBZHQKgx294/u9h1fZQoaAZoCWgPQwjXoC+9/RkDwJSGlFKUaBVLMmgWR0CoMZ48+zMSdX2UKGgGaAloD0MINV8lH7tLFMCUhpRSlGgVSzJoFkdAqDFfFxXGO3V9lChoBmgJaA9DCNUGJ6JfmwXAlIaUUpRoFUsyaBZHQKgzlV3ljmV1fZQoaAZoCWgPQwgZO+ElOBUFwJSGlFKUaBVLMmgWR0CoM1cKohpydX2UKGgGaAloD0MIjErqBDTxBsCUhpRSlGgVSzJoFkdAqDMZWmxdIHV9lChoBmgJaA9DCHXmHhK+NwrAlIaUUpRoFUsyaBZHQKgy2ry1/lR1fZQoaAZoCWgPQwhXk6espmsEwJSGlFKUaBVLMmgWR0CoNQUBfa6CdX2UKGgGaAloD0MIya1JtyXSBMCUhpRSlGgVSzJoFkdAqDTGpS75EnV9lChoBmgJaA9DCNL/ci1aYAPAlIaUUpRoFUsyaBZHQKg0iP07KaJ1fZQoaAZoCWgPQwiyEvOspBUFwJSGlFKUaBVLMmgWR0CoNEo6r/83dX2UKGgGaAloD0MINzP60XB6FMCUhpRSlGgVSzJoFkdAqDaISUTtcHV9lChoBmgJaA9DCAuW6gJepg7AlIaUUpRoFUsyaBZHQKg2Sj+rELp1fZQoaAZoCWgPQwg9DoP5K+QLwJSGlFKUaBVLMmgWR0CoNgycslLOdX2UKGgGaAloD0MIkYDR5c0hDcCUhpRSlGgVSzJoFkdAqDXNlbu+iHV9lChoBmgJaA9DCEZ55uWwuwbAlIaUUpRoFUsyaBZHQKg4B92ovSN1fZQoaAZoCWgPQwiBQGfSpmoLwJSGlFKUaBVLMmgWR0CoN8maQV9GdX2UKGgGaAloD0MIJov7j0zHCsCUhpRSlGgVSzJoFkdAqDeL8xbjcXV9lChoBmgJaA9DCKc/+5Ei0hPAlIaUUpRoFUsyaBZHQKg3TRpDeCV1fZQoaAZoCWgPQwiZ02UxsbkKwJSGlFKUaBVLMmgWR0CoOY4fnwG4dX2UKGgGaAloD0MIavrsgOsqBsCUhpRSlGgVSzJoFkdAqDlPyTY/V3V9lChoBmgJaA9DCITzqWOV0gHAlIaUUpRoFUsyaBZHQKg5Eo6S1Vp1fZQoaAZoCWgPQwhP6zao/VYIwJSGlFKUaBVLMmgWR0CoONM8HObBdX2UKGgGaAloD0MI2q7QB8s4CMCUhpRSlGgVSzJoFkdAqDsPjuKGcnV9lChoBmgJaA9DCNYApaFGIQjAlIaUUpRoFUsyaBZHQKg60J9iMHd1fZQoaAZoCWgPQwg9Qzhm2ZMHwJSGlFKUaBVLMmgWR0CoOpJemelLdX2UKGgGaAloD0MIox6i0R3EB8CUhpRSlGgVSzJoFkdAqDpSkyk9EHV9lChoBmgJaA9DCNCc9SnHZAjAlIaUUpRoFUsyaBZHQKg7/bjcVQB1fZQoaAZoCWgPQwgjvD0IATkMwJSGlFKUaBVLMmgWR0CoO77kfcN6dX2UKGgGaAloD0MI0LaadcY3DMCUhpRSlGgVSzJoFkdAqDuAvYe1bHV9lChoBmgJaA9DCK37x0J0CAjAlIaUUpRoFUsyaBZHQKg7QTlDF611fZQoaAZoCWgPQwjWyK60jPQFwJSGlFKUaBVLMmgWR0CoPONayKNydX2UKGgGaAloD0MIceZXc4BgBcCUhpRSlGgVSzJoFkdAqDykbrC3w3V9lChoBmgJaA9DCCkJibSNvwzAlIaUUpRoFUsyaBZHQKg8ZinYQJ51fZQoaAZoCWgPQwjVXG4w1IEHwJSGlFKUaBVLMmgWR0CoPCZvUBn0dX2UKGgGaAloD0MIQrEVNC1xB8CUhpRSlGgVSzJoFkdAqD3aG8EmpnV9lChoBmgJaA9DCI523PC7SQbAlIaUUpRoFUsyaBZHQKg9myzolld1fZQoaAZoCWgPQwitad5xig4FwJSGlFKUaBVLMmgWR0CoPVz3RG+cdX2UKGgGaAloD0MIwygIHt/eBcCUhpRSlGgVSzJoFkdAqD0de+mFanV9lChoBmgJaA9DCBaKdD+nIBDAlIaUUpRoFUsyaBZHQKg+zBSk0rN1fZQoaAZoCWgPQwj0a+un/ywFwJSGlFKUaBVLMmgWR0CoPo0w8GLUdX2UKGgGaAloD0MIq7NaYI8pBsCUhpRSlGgVSzJoFkdAqD5O+0w8GXV9lChoBmgJaA9DCEmBBTBlQArAlIaUUpRoFUsyaBZHQKg+Dz7MxGl1fZQoaAZoCWgPQwgZyLPLt/4JwJSGlFKUaBVLMmgWR0CoP75SeiBYdX2UKGgGaAloD0MIN+DzwwjhEcCUhpRSlGgVSzJoFkdAqD9/lMh5gXV9lChoBmgJaA9DCDlegehJWQXAlIaUUpRoFUsyaBZHQKg/QZ4Oc2B1fZQoaAZoCWgPQwhXJ2co7vgEwJSGlFKUaBVLMmgWR0CoPwHU+cH4dX2UKGgGaAloD0MI2IAIceXsFMCUhpRSlGgVSzJoFkdAqECuo3rD63V9lChoBmgJaA9DCNXNxd/2xAbAlIaUUpRoFUsyaBZHQKhAb7Jnxrl1fZQoaAZoCWgPQwikpl1MM10NwJSGlFKUaBVLMmgWR0CoQDHAZbY9dX2UKGgGaAloD0MIw2M/i6UoCcCUhpRSlGgVSzJoFkdAqD/x64UeuHV9lChoBmgJaA9DCDpbQGg9nBLAlIaUUpRoFUsyaBZHQKhBkmUnogV1fZQoaAZoCWgPQwg7Hch6anUNwJSGlFKUaBVLMmgWR0CoQVODJ2dNdX2UKGgGaAloD0MI0cq9wKxQBMCUhpRSlGgVSzJoFkdAqEEVOCXhO3V9lChoBmgJaA9DCC2Y+KOo0wHAlIaUUpRoFUsyaBZHQKhA1Whh6Sl1fZQoaAZoCWgPQwjB/YAHBjAFwJSGlFKUaBVLMmgWR0CoQn/k/8l5dX2UKGgGaAloD0MIy6Da4ESEEcCUhpRSlGgVSzJoFkdAqEJA/3WWhXV9lChoBmgJaA9DCFQaMbPPow7AlIaUUpRoFUsyaBZHQKhCAsunMt91fZQoaAZoCWgPQwhdFhObjwsMwJSGlFKUaBVLMmgWR0CoQcMINVindX2UKGgGaAloD0MIrIxGPq/4C8CUhpRSlGgVSzJoFkdAqENyS9ugpXV9lChoBmgJaA9DCDWXGwx1eArAlIaUUpRoFUsyaBZHQKhDM4axX4l1fZQoaAZoCWgPQwgXY2Adx08IwJSGlFKUaBVLMmgWR0CoQvVHe7+UdX2UKGgGaAloD0MI3lomw/FcCMCUhpRSlGgVSzJoFkdAqEK1b/wRXnV9lChoBmgJaA9DCEVJSKRt/AbAlIaUUpRoFUsyaBZHQKhEariEQGx1fZQoaAZoCWgPQwh8DixHyKANwJSGlFKUaBVLMmgWR0CoRCvCdjG2dX2UKGgGaAloD0MIZeHra13KCcCUhpRSlGgVSzJoFkdAqEPtvuPV/nV9lChoBmgJaA9DCJNuS+SCIxDAlIaUUpRoFUsyaBZHQKhDrg0CRwJ1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dbbb8133cc120141e61d7155d442ae12f68aa9a5eb305c59666e852d1cbd4392
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3956521a597b4f340249c3c9a57509187c29dcc7edfc17153a9a4b54ba9144f5
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f9da9c16ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9da9c0de40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675972762660495709, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAR9XoPhBDRTxOKgg/R9XoPhBDRTxOKgg/R9XoPhBDRTxOKgg/R9XoPhBDRTxOKgg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAArTeLP4rJpb8wCJs/NL9GP5+Utb/L++09GrErvx3s5z7tpNa/cEpgPxS7wL/mBjE/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABH1eg+EENFPE4qCD+7oFI8TmplOxqVITpH1eg+EENFPE4qCD+7oFI8TmplOxqVITpH1eg+EENFPE4qCD+7oFI8TmplOxqVITpH1eg+EENFPE4qCD+7oFI8TmplOxqVITqUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.45475218 0.01203991 0.5318955 ]\n [0.45475218 0.01203991 0.5318955 ]\n [0.45475218 0.01203991 0.5318955 ]\n [0.45475218 0.01203991 0.5318955 ]]", "desired_goal": "[[ 1.0876366 -1.295213 1.2111874 ]\n [ 0.776355 -1.418598 0.11620291]\n [-0.6706711 0.45297328 -1.6769081 ]\n [ 0.8761358 -1.5057092 0.6915115 ]]", "observation": "[[0.45475218 0.01203991 0.5318955 0.0128557 0.0035006 0.00061639]\n [0.45475218 0.01203991 0.5318955 0.0128557 0.0035006 0.00061639]\n [0.45475218 0.01203991 0.5318955 0.0128557 0.0035006 0.00061639]\n [0.45475218 0.01203991 0.5318955 0.0128557 0.0035006 0.00061639]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAk2bCPVYB2T10zIk+LDO1PRe6/73rfWU+e+GmPd9oKD2qaZk+jK3xPQNPf70xHZw9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.09492221 0.10595958 0.26913798]\n [ 0.08847651 -0.12486666 0.22411315]\n [ 0.08148476 0.04111564 0.29963428]\n [ 0.1180068 -0.06233121 0.07622755]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIM4l6wafZBMCUhpRSlIwBbJRLMowBdJRHQKgp9V/c32p1fZQoaAZoCWgPQwjvOhvyz2wQwJSGlFKUaBVLMmgWR0CoKbZuQ6p6dX2UKGgGaAloD0MIWTMyyF1ECcCUhpRSlGgVSzJoFkdAqCl4QUYbbXV9lChoBmgJaA9DCANC6+HLZALAlIaUUpRoFUsyaBZHQKgpOKAJ9iN1fZQoaAZoCWgPQwg2zqYjgHsHwJSGlFKUaBVLMmgWR0CoKuQ/5ckddX2UKGgGaAloD0MI3IR7Zd4qBsCUhpRSlGgVSzJoFkdAqCqlbmlqJ3V9lChoBmgJaA9DCOhPG9XpQA/AlIaUUpRoFUsyaBZHQKgqZ0uDjBF1fZQoaAZoCWgPQwjWjAxyF7EQwJSGlFKUaBVLMmgWR0CoKie3pfQbdX2UKGgGaAloD0MI8l1KXTIuDMCUhpRSlGgVSzJoFkdAqCveXJHRTnV9lChoBmgJaA9DCDNwQEtX0AzAlIaUUpRoFUsyaBZHQKgrn3fyf+V1fZQoaAZoCWgPQwhTliGOdfEFwJSGlFKUaBVLMmgWR0CoK2FCb+cZdX2UKGgGaAloD0MIjdE6qpqgBMCUhpRSlGgVSzJoFkdAqCshcHGCI3V9lChoBmgJaA9DCOyFAraDsQbAlIaUUpRoFUsyaBZHQKgsy6GQCCB1fZQoaAZoCWgPQwiFRNrGnxgQwJSGlFKUaBVLMmgWR0CoLIy4e9zwdX2UKGgGaAloD0MIWDm0yHYeAsCUhpRSlGgVSzJoFkdAqCxOdRR/E3V9lChoBmgJaA9DCP63kh0bYQ/AlIaUUpRoFUsyaBZHQKgsDq/M4cZ1fZQoaAZoCWgPQwjohTsXRloHwJSGlFKUaBVLMmgWR0CoLb8V58jSdX2UKGgGaAloD0MIzNB4IoizBcCUhpRSlGgVSzJoFkdAqC2AMQVbinV9lChoBmgJaA9DCKOVe4FZQQbAlIaUUpRoFUsyaBZHQKgtQfms/6h1fZQoaAZoCWgPQwgwR4/f22QRwJSGlFKUaBVLMmgWR0CoLQIm5UcXdX2UKGgGaAloD0MIblD7rZ3oD8CUhpRSlGgVSzJoFkdAqC6zXL/0d3V9lChoBmgJaA9DCCEeiZen0w3AlIaUUpRoFUsyaBZHQKgudLjghr51fZQoaAZoCWgPQwjyW3Sy1BoLwJSGlFKUaBVLMmgWR0CoLjaYVqN7dX2UKGgGaAloD0MIjA+zl23nAcCUhpRSlGgVSzJoFkdAqC325paibnV9lChoBmgJaA9DCJbtQ95y9Q7AlIaUUpRoFUsyaBZHQKgvod1dPcl1fZQoaAZoCWgPQwjt0obD0vAQwJSGlFKUaBVLMmgWR0CoL2LpJPIodX2UKGgGaAloD0MIIuAQqtSMAMCUhpRSlGgVSzJoFkdAqC8kp9ZzP3V9lChoBmgJaA9DCKXXZmMlxgPAlIaUUpRoFUsyaBZHQKgu5OVPepJ1fZQoaAZoCWgPQwgPmfIhqLoPwJSGlFKUaBVLMmgWR0CoMJ68pTdddX2UKGgGaAloD0MInwWhvI+jAcCUhpRSlGgVSzJoFkdAqDBgqy4WlHV9lChoBmgJaA9DCJzdWibDMQPAlIaUUpRoFUsyaBZHQKgwIt4A0bd1fZQoaAZoCWgPQwjXvRWJCeoNwJSGlFKUaBVLMmgWR0CoL+OkDZDidX2UKGgGaAloD0MIvaYHBaXoAsCUhpRSlGgVSzJoFkdAqDIaE6DGtXV9lChoBmgJaA9DCHJuE+6VGQvAlIaUUpRoFUsyaBZHQKgx294/u9h1fZQoaAZoCWgPQwjXoC+9/RkDwJSGlFKUaBVLMmgWR0CoMZ48+zMSdX2UKGgGaAloD0MINV8lH7tLFMCUhpRSlGgVSzJoFkdAqDFfFxXGO3V9lChoBmgJaA9DCNUGJ6JfmwXAlIaUUpRoFUsyaBZHQKgzlV3ljmV1fZQoaAZoCWgPQwgZO+ElOBUFwJSGlFKUaBVLMmgWR0CoM1cKohpydX2UKGgGaAloD0MIjErqBDTxBsCUhpRSlGgVSzJoFkdAqDMZWmxdIHV9lChoBmgJaA9DCHXmHhK+NwrAlIaUUpRoFUsyaBZHQKgy2ry1/lR1fZQoaAZoCWgPQwhXk6espmsEwJSGlFKUaBVLMmgWR0CoNQUBfa6CdX2UKGgGaAloD0MIya1JtyXSBMCUhpRSlGgVSzJoFkdAqDTGpS75EnV9lChoBmgJaA9DCNL/ci1aYAPAlIaUUpRoFUsyaBZHQKg0iP07KaJ1fZQoaAZoCWgPQwiyEvOspBUFwJSGlFKUaBVLMmgWR0CoNEo6r/83dX2UKGgGaAloD0MINzP60XB6FMCUhpRSlGgVSzJoFkdAqDaISUTtcHV9lChoBmgJaA9DCAuW6gJepg7AlIaUUpRoFUsyaBZHQKg2Sj+rELp1fZQoaAZoCWgPQwg9DoP5K+QLwJSGlFKUaBVLMmgWR0CoNgycslLOdX2UKGgGaAloD0MIkYDR5c0hDcCUhpRSlGgVSzJoFkdAqDXNlbu+iHV9lChoBmgJaA9DCEZ55uWwuwbAlIaUUpRoFUsyaBZHQKg4B92ovSN1fZQoaAZoCWgPQwiBQGfSpmoLwJSGlFKUaBVLMmgWR0CoN8maQV9GdX2UKGgGaAloD0MIJov7j0zHCsCUhpRSlGgVSzJoFkdAqDeL8xbjcXV9lChoBmgJaA9DCKc/+5Ei0hPAlIaUUpRoFUsyaBZHQKg3TRpDeCV1fZQoaAZoCWgPQwiZ02UxsbkKwJSGlFKUaBVLMmgWR0CoOY4fnwG4dX2UKGgGaAloD0MIavrsgOsqBsCUhpRSlGgVSzJoFkdAqDlPyTY/V3V9lChoBmgJaA9DCITzqWOV0gHAlIaUUpRoFUsyaBZHQKg5Eo6S1Vp1fZQoaAZoCWgPQwhP6zao/VYIwJSGlFKUaBVLMmgWR0CoONM8HObBdX2UKGgGaAloD0MI2q7QB8s4CMCUhpRSlGgVSzJoFkdAqDsPjuKGcnV9lChoBmgJaA9DCNYApaFGIQjAlIaUUpRoFUsyaBZHQKg60J9iMHd1fZQoaAZoCWgPQwg9Qzhm2ZMHwJSGlFKUaBVLMmgWR0CoOpJemelLdX2UKGgGaAloD0MIox6i0R3EB8CUhpRSlGgVSzJoFkdAqDpSkyk9EHV9lChoBmgJaA9DCNCc9SnHZAjAlIaUUpRoFUsyaBZHQKg7/bjcVQB1fZQoaAZoCWgPQwgjvD0IATkMwJSGlFKUaBVLMmgWR0CoO77kfcN6dX2UKGgGaAloD0MI0LaadcY3DMCUhpRSlGgVSzJoFkdAqDuAvYe1bHV9lChoBmgJaA9DCK37x0J0CAjAlIaUUpRoFUsyaBZHQKg7QTlDF611fZQoaAZoCWgPQwjWyK60jPQFwJSGlFKUaBVLMmgWR0CoPONayKNydX2UKGgGaAloD0MIceZXc4BgBcCUhpRSlGgVSzJoFkdAqDykbrC3w3V9lChoBmgJaA9DCCkJibSNvwzAlIaUUpRoFUsyaBZHQKg8ZinYQJ51fZQoaAZoCWgPQwjVXG4w1IEHwJSGlFKUaBVLMmgWR0CoPCZvUBn0dX2UKGgGaAloD0MIQrEVNC1xB8CUhpRSlGgVSzJoFkdAqD3aG8EmpnV9lChoBmgJaA9DCI523PC7SQbAlIaUUpRoFUsyaBZHQKg9myzolld1fZQoaAZoCWgPQwitad5xig4FwJSGlFKUaBVLMmgWR0CoPVz3RG+cdX2UKGgGaAloD0MIwygIHt/eBcCUhpRSlGgVSzJoFkdAqD0de+mFanV9lChoBmgJaA9DCBaKdD+nIBDAlIaUUpRoFUsyaBZHQKg+zBSk0rN1fZQoaAZoCWgPQwj0a+un/ywFwJSGlFKUaBVLMmgWR0CoPo0w8GLUdX2UKGgGaAloD0MIq7NaYI8pBsCUhpRSlGgVSzJoFkdAqD5O+0w8GXV9lChoBmgJaA9DCEmBBTBlQArAlIaUUpRoFUsyaBZHQKg+Dz7MxGl1fZQoaAZoCWgPQwgZyLPLt/4JwJSGlFKUaBVLMmgWR0CoP75SeiBYdX2UKGgGaAloD0MIN+DzwwjhEcCUhpRSlGgVSzJoFkdAqD9/lMh5gXV9lChoBmgJaA9DCDlegehJWQXAlIaUUpRoFUsyaBZHQKg/QZ4Oc2B1fZQoaAZoCWgPQwhXJ2co7vgEwJSGlFKUaBVLMmgWR0CoPwHU+cH4dX2UKGgGaAloD0MI2IAIceXsFMCUhpRSlGgVSzJoFkdAqECuo3rD63V9lChoBmgJaA9DCNXNxd/2xAbAlIaUUpRoFUsyaBZHQKhAb7Jnxrl1fZQoaAZoCWgPQwikpl1MM10NwJSGlFKUaBVLMmgWR0CoQDHAZbY9dX2UKGgGaAloD0MIw2M/i6UoCcCUhpRSlGgVSzJoFkdAqD/x64UeuHV9lChoBmgJaA9DCDpbQGg9nBLAlIaUUpRoFUsyaBZHQKhBkmUnogV1fZQoaAZoCWgPQwg7Hch6anUNwJSGlFKUaBVLMmgWR0CoQVODJ2dNdX2UKGgGaAloD0MI0cq9wKxQBMCUhpRSlGgVSzJoFkdAqEEVOCXhO3V9lChoBmgJaA9DCC2Y+KOo0wHAlIaUUpRoFUsyaBZHQKhA1Whh6Sl1fZQoaAZoCWgPQwjB/YAHBjAFwJSGlFKUaBVLMmgWR0CoQn/k/8l5dX2UKGgGaAloD0MIy6Da4ESEEcCUhpRSlGgVSzJoFkdAqEJA/3WWhXV9lChoBmgJaA9DCFQaMbPPow7AlIaUUpRoFUsyaBZHQKhCAsunMt91fZQoaAZoCWgPQwhdFhObjwsMwJSGlFKUaBVLMmgWR0CoQcMINVindX2UKGgGaAloD0MIrIxGPq/4C8CUhpRSlGgVSzJoFkdAqENyS9ugpXV9lChoBmgJaA9DCDWXGwx1eArAlIaUUpRoFUsyaBZHQKhDM4axX4l1fZQoaAZoCWgPQwgXY2Adx08IwJSGlFKUaBVLMmgWR0CoQvVHe7+UdX2UKGgGaAloD0MI3lomw/FcCMCUhpRSlGgVSzJoFkdAqEK1b/wRXnV9lChoBmgJaA9DCEVJSKRt/AbAlIaUUpRoFUsyaBZHQKhEariEQGx1fZQoaAZoCWgPQwh8DixHyKANwJSGlFKUaBVLMmgWR0CoRCvCdjG2dX2UKGgGaAloD0MIZeHra13KCcCUhpRSlGgVSzJoFkdAqEPtvuPV/nV9lChoBmgJaA9DCJNuS+SCIxDAlIaUUpRoFUsyaBZHQKhDrg0CRwJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (827 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -3.199977527651936, "std_reward": 0.6572647187659498, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-09T20:51:22.446492"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad1312c804ec71cdddecf6079fa80a4cc3bb509b5f302484b8dd2134dcdb3a6a
3
+ size 3056