File size: 14,755 Bytes
54c3de5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
{
    "policy_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
        "__module__": "stable_baselines3.common.policies",
        "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ",
        "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7e66b279f0a0>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc._abc_data object at 0x7e66b27ac240>"
    },
    "verbose": 1,
    "policy_kwargs": {
        ":type:": "<class 'dict'>",
        ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
        "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
        "optimizer_kwargs": {
            "alpha": 0.99,
            "eps": 1e-05,
            "weight_decay": 0
        }
    },
    "num_timesteps": 1000000,
    "_total_timesteps": 1000000,
    "_num_timesteps_at_start": 0,
    "seed": null,
    "action_noise": null,
    "start_time": 1694964782749353410,
    "learning_rate": 0.0007,
    "tensorboard_log": null,
    "_last_obs": {
        ":type:": "<class 'collections.OrderedDict'>",
        ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAqnp2PoRndrtwjeQ+st7pPKTxnz8rXlC/dsSpO+RP377lPlu+itMmPt+c2b5lDTM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAwjWavvOoHz5xIag/P96dPmQWtj8U7yW+pLpWPk+bsr+0KcK//jDoPsu7aL8N5m4/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACqenY+hGd2u3CN5D6o2PY+8PDOOtc+xD6y3uk8pPGfPyteUL/lUcI/wMxjP45Mxb12xKk75E/fvuU+W77PcWW/mlDSvwUVoL+K0yY+35zZvmUNMz8G5w4/DWbPvwyNmz+UaA5LBEsGhpRoEnSUUpR1Lg==",
        "achieved_goal": "[[ 0.2407023  -0.00375983  0.44639158]\n [ 0.02854857  1.2495618  -0.8139369 ]\n [ 0.00518089 -0.4361564  -0.21410711]\n [ 0.16291633 -0.42502496  0.69942313]]",
        "desired_goal": "[[-0.3011914   0.15591793  1.3135206 ]\n [ 0.30833623  1.4225583  -0.16204482]\n [ 0.20969635 -1.3953646  -1.5168977 ]\n [ 0.45349878 -0.9091155   0.9331978 ]]",
        "observation": "[[ 2.4070230e-01 -3.7598321e-03  4.4639158e-01  4.8212171e-01\n   1.5788358e-03  3.8329193e-01]\n [ 2.8548572e-02  1.2495618e+00 -8.1393689e-01  1.5181242e+00\n   8.8984299e-01 -9.6337423e-02]\n [ 5.1808907e-03 -4.3615639e-01 -2.1410711e-01 -8.9626783e-01\n  -1.6430848e+00 -1.2506415e+00]\n [ 1.6291633e-01 -4.2502496e-01  6.9942313e-01  5.5821264e-01\n  -1.6203018e+00  1.2152419e+00]]"
    },
    "_last_episode_starts": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
    },
    "_last_original_obs": {
        ":type:": "<class 'collections.OrderedDict'>",
        ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGo0Pvl5EjT0rfgY+HjEYviwoCz5Uwgg+N43Dvdp4hT3RZ0M+kxDgPc3on7xAd1o+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
        "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]",
        "desired_goal": "[[-0.1401867   0.06897806  0.13134067]\n [-0.14862487  0.13589543  0.1335538 ]\n [-0.09548419  0.06517191  0.19082572]\n [ 0.10940661 -0.01952019  0.21334553]]",
        "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"
    },
    "_episode_num": 0,
    "use_sde": false,
    "sde_sample_freq": -1,
    "_current_progress_remaining": 0.0,
    "_stats_window_size": 100,
    "ep_info_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8RrWRRuTA6MAWyUSwKMAXSUR0CkRhwfIS13dX2UKGgGR7/PVQQ+UyHmaAdLA2gIR0CkReFchTwVdX2UKGgGR7/BL/S6UaAGaAdLAmgIR0CkRmf8l5WzdX2UKGgGR7/QmeDnNgSfaAdLA2gIR0CkRbPQv6CUdX2UKGgGR7/Jn8sMAmzCaAdLA2gIR0CkRjZzYEntdX2UKGgGR7/QzdUKiO/+aAdLA2gIR0CkRft21UlzdX2UKGgGR7/DD7655JK8aAdLAmgIR0CkRnrl/6O6dX2UKGgGR7/UXrt3OfNBaAdLA2gIR0CkRcy/j81odX2UKGgGR7/FPTG5tm+TaAdLAmgIR0CkRoiMxXXAdX2UKGgGR7/DEKmbb1yvaAdLA2gIR0CkRkw/5ckddX2UKGgGR7/I71ZkkKNRaAdLA2gIR0CkRhE43m3fdX2UKGgGR7/EFlkH2RJVaAdLAmgIR0CkRpnpSrHVdX2UKGgGR7/O4n4O+ZgHaAdLA2gIR0CkReWPtD2KdX2UKGgGR7/HSXt0FKTTaAdLA2gIR0CkRmQt8NQTdX2UKGgGR7/LBtUGVzIWaAdLA2gIR0CkRikTQE6ldX2UKGgGR7/Eb2Dg62fDaAdLAmgIR0CkRqg62fCidX2UKGgGR7+hKDkELYwqaAdLAWgIR0CkRi/6oESvdX2UKGgGR7+iItUXHim3aAdLAWgIR0CkRq8XFcY7dX2UKGgGR7/CUN8VpKzzaAdLAmgIR0CkRnJFb3XadX2UKGgGR7/SDzAeq7yyaAdLA2gIR0CkRfqm8/UwdX2UKGgGR7/DyUcGTs6aaAdLAmgIR0CkRj2l/H5rdX2UKGgGR7+39vS+g13uaAdLAmgIR0CkRsC9ytFKdX2UKGgGR7/O1rIo3JgcaAdLA2gIR0CkRouK4x1xdX2UKGgGR7/OoGY8dPtVaAdLA2gIR0CkRhQ9JSR9dX2UKGgGR7+yrjo6jnFHaAdLAmgIR0CkRtAu7HyVdX2UKGgGR7/IGlhw2l2vaAdLA2gIR0CkRlhX8wYcdX2UKGgGR7+71Iy0rsjWaAdLAmgIR0CkRpp9qk/KdX2UKGgGR7/BcDbJwKjSaAdLAmgIR0CkRiLvLHMmdX2UKGgGR7/LJbMX7+DOaAdLA2gIR0CkRuhbOeJ6dX2UKGgGR7/G2XLNfPX1aAdLA2gIR0CkRnALZzxPdX2UKGgGR7/T1SwW3z+WaAdLA2gIR0CkRrOkUKzBdX2UKGgGR7/NmZE2Hck/aAdLA2gIR0CkRjwcHWz4dX2UKGgGR7+367/XGwRoaAdLAmgIR0CkRvfDLr5ZdX2UKGgGR7+2EeyRjjJdaAdLAmgIR0CkRn+eOGTLdX2UKGgGR7/APq9oN/e+aAdLAmgIR0CkRwUlqrR0dX2UKGgGR7/Q/cFhXr+paAdLA2gIR0CkRlCswL3LdX2UKGgGR7/a62fChvitaAdLBGgIR0CkRtJ8OTaCdX2UKGgGR7/OCL/CIk7faAdLA2gIR0CkRpdhiLEUdX2UKGgGR7+lGEwnH/96aAdLAWgIR0CkRtqDbrTqdX2UKGgGR7/RAE+xGDtgaAdLA2gIR0CkRx6AvtdBdX2UKGgGR7/D3QD3dsSCaAdLAmgIR0CkRuhuXNTtdX2UKGgGR7/Ug5zYEnstaAdLBGgIR0CkRrOvdM0xdX2UKGgGR7/cTB68g6ltaAdLBWgIR0CkRnfsVtXQdX2UKGgGR7/hLNwBHTZyaAdLBWgIR0CkR0ZamoBJdX2UKGgGR7/R41P3ztkXaAdLBGgIR0CkRwmlANXpdX2UKGgGR7/KQ176YVqOaAdLA2gIR0CkRs6bWmP6dX2UKGgGR7/X5v99+gDiaAdLBGgIR0CkRpsJpnHvdX2UKGgGR7/OfFrEcbR4aAdLA2gIR0CkRyQcghbGdX2UKGgGR7/Ye4Cp3os7aAdLBGgIR0CkR2jjin50dX2UKGgGR7/XVbRnezlcaAdLBGgIR0CkRvFtj0+UdX2UKGgGR7/Sm+0w8GLUaAdLA2gIR0CkRrU8eS0TdX2UKGgGR7/JKqXF98Z2aAdLA2gIR0CkRzouoP07dX2UKGgGR7/QDye7L+xXaAdLA2gIR0CkR37eVLSNdX2UKGgGR7+6eiBXjlxPaAdLAmgIR0CkR5DdP+GXdX2UKGgGR7/RYc/+sHSnaAdLA2gIR0CkR1QY1pCbdX2UKGgGR7/YLOzIFNcoaAdLBWgIR0CkRxj9XLeRdX2UKGgGR7/Hd0JWvKU3aAdLA2gIR0CkR6boB7u2dX2UKGgGR7/QM36yjYZmaAdLA2gIR0CkR2pEH+qBdX2UKGgGR7/Gay8jAzpHaAdLA2gIR0CkRy9JJ5E/dX2UKGgGR7/kpaq0dBBzaAdLCGgIR0CkRvMNtqHodX2UKGgGR7+nVqesgdOqaAdLAWgIR0CkRzu4PPLQdX2UKGgGR7/CmJm/WUbDaAdLAmgIR0CkR0k7GNrCdX2UKGgGR7/ON6PbO/tZaAdLA2gIR0CkRw1/DtPYdX2UKGgGR7/XuRLbpNbkaAdLBGgIR0CkR8oGpuMudX2UKGgGR7/d21D0Dlo2aAdLBGgIR0CkR40i6g/UdX2UKGgGR7/Fw5vLowEhaAdLA2gIR0CkR2V5KODKdX2UKGgGR7/NGo73fyf+aAdLA2gIR0CkRymCyyD7dX2UKGgGR7/TkjX4CZF5aAdLA2gIR0CkR+XlS0jUdX2UKGgGR7/LWYF7laKUaAdLA2gIR0CkR6kzGgjAdX2UKGgGR7+j1kDp1RtQaAdLAWgIR0CkR7CQkonbdX2UKGgGR7+4hHLA57w8aAdLAmgIR0CkRzj+717IdX2UKGgGR7/PwmVqveP8aAdLA2gIR0CkR3yLqD9PdX2UKGgGR7+5rzoUzsQeaAdLAmgIR0CkR7850bLmdX2UKGgGR7/Weq7yxzJZaAdLBGgIR0CkSAb+DOC5dX2UKGgGR7/RFefI0ZWJaAdLA2gIR0CkR1JZwGW2dX2UKGgGR7/R08NhE0BPaAdLA2gIR0CkR5Xd0q6OdX2UKGgGR7++ZE2Hck+paAdLAmgIR0CkSBTtb9qDdX2UKGgGR7/KpvxYq5LAaAdLA2gIR0CkR9fzJ6ppdX2UKGgGR7/SN+LFXJYDaAdLA2gIR0CkR2f5ULlWdX2UKGgGR7/H7CSA6MisaAdLA2gIR0CkR6wBYFJQdX2UKGgGR7/SG5c1O0swaAdLA2gIR0CkR/JdSl3ydX2UKGgGR7/NgZTAFgUlaAdLBGgIR0CkSDZGz8gqdX2UKGgGR7/OiYb83uNQaAdLA2gIR0CkR8YlpoK2dX2UKGgGR7/Yz19ORDCxaAdLBGgIR0CkR4ohyKekdX2UKGgGR7/DmYBvJiiJaAdLAmgIR0CkSEYOc2BKdX2UKGgGR7/QBCUornTzaAdLA2gIR0CkSAlERaoudX2UKGgGR7+n8XN1QqI8aAdLAWgIR0CkSE3sHB1tdX2UKGgGR7+08La24NI9aAdLAmgIR0CkSBuuA7PqdX2UKGgGR7/T4eLehwl0aAdLBGgIR0CkR6rX18LKdX2UKGgGR7/Hq+Jxeb/faAdLA2gIR0CkSGaisXBQdX2UKGgGR7/Plbu+h4+saAdLA2gIR0CkSDCOFQEZdX2UKGgGR7+5mjCYTj//aAdLAmgIR0CkR7jx9XtCdX2UKGgGR7/eGViWmgrZaAdLB2gIR0CkR/xBE8aGdX2UKGgGR7/KblzU7Sy/aAdLA2gIR0CkSH+XAuZkdX2UKGgGR7/ASkj5bhWHaAdLAmgIR0CkR8rs0HhTdX2UKGgGR7/As+3Ytg8baAdLAmgIR0CkSA5hBqsVdX2UKGgGR7/V7TlT3qRmaAdLBGgIR0CkSFBt+CsfdX2UKGgGR7+0bfgrH2h7aAdLAmgIR0CkSBwdbPhRdX2UKGgGR7/F6+FlCkXUaAdLA2gIR0CkR9/gJkXldX2UKGgGR7/XJWeYlY2baAdLBGgIR0CkSJwRwqAjdWUu"
    },
    "ep_success_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
    },
    "_n_updates": 50000,
    "n_steps": 5,
    "gamma": 0.99,
    "gae_lambda": 1.0,
    "ent_coef": 0.0,
    "vf_coef": 0.5,
    "max_grad_norm": 0.5,
    "normalize_advantage": false,
    "observation_space": {
        ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
        ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
        "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
        "_shape": null,
        "dtype": null,
        "_np_random": null
    },
    "action_space": {
        ":type:": "<class 'gymnasium.spaces.box.Box'>",
        ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
        "dtype": "float32",
        "bounded_below": "[ True  True  True]",
        "bounded_above": "[ True  True  True]",
        "_shape": [
            3
        ],
        "low": "[-1. -1. -1.]",
        "high": "[1. 1. 1.]",
        "low_repr": "-1.0",
        "high_repr": "1.0",
        "_np_random": null
    },
    "n_envs": 4,
    "lr_schedule": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
    }
}