File size: 3,185 Bytes
24f80b1
 
 
 
 
 
 
 
 
 
 
2c3737f
 
 
24f80b1
 
 
 
 
 
 
 
 
2c3737f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- trl
base_model: fhai50032/RolePlayLake-7B
datasets:
- Undi95/toxic-dpo-v0.1-NoWarning
- NobodyExistsOnTheInternet/ToxicQAFinal
---

# Uploaded  model

- **Developed by:** fhai50032
- **License:** apache-2.0
- **Finetuned from model :** fhai50032/RolePlayLake-7B


More Uncensored out of the gate without any prompting;
trained on [Undi95/toxic-dpo-v0.1-sharegpt](https://huggingface.co/datasets/Undi95/toxic-dpo-v0.1-sharegpt) and other unalignment dataset


**QLoRA (4bit)**

Params to replicate training

Peft Config
```
    r = 64, 
    target_modules = ['v_proj', 'down_proj', 'up_proj', 
                      'o_proj', 'q_proj', 'gate_proj', 'k_proj'],
    lora_alpha = 128, #weight_scaling
    lora_dropout = 0, # Supports any, but = 0 is optimized
    bias = "none",    # Supports any, but = "none" is optimized
    use_gradient_checkpointing = True,#False,#
    random_state = 3407,
    max_seq_length = 1024,
```


Training args
```
        per_device_train_batch_size = 6,
        gradient_accumulation_steps = 6,
        gradient_checkpointing=True,
#       warmup_ratio = 0.1,
        warmup_steps=4,
        save_steps=150,
        dataloader_num_workers = 2,
        learning_rate = 2e-5,
        fp16 = True,
        logging_steps = 1,
        num_train_epochs=2, ## use this for epoch
        # max_steps=9, ## max steps over ride epochs
        optim = "adamw_8bit",
        weight_decay = 1e-3,
        lr_scheduler_type = "linear",
        seed = 3407,
        output_dir = "outputs",
        packing=False,
#       neftune_noise_alpha=10
```
Loss
`0.6182`

Training Results
[<img src="https://huggingface.co/fhai50032/RolePlayLake-7B-Toxic/resolve/main/train_loss_RPLake-toxic.png" width="400"/>](https://huggingface.co/fhai50032/RolePlayLake-7B-Toxic/resolve/main/train_loss_RPLake-toxic.png)

[Wandb](https://huggingface.co/fhai50032/RolePlayLake-7B-Toxic/resolve/main/Wandb-RPLake.csv)



**Interernce Code**
-Supports Alpaca , ChatML and maybe others too


```pip install -qU transformers accelerate bitsandbytes```



```from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
import torch

model_name = "fhai50032/RolePlayLake-7B-Toxic"

tokenizer = AutoTokenizer.from_pretrained(model_name)
# use 4bit quantization
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_use_double_quant=True,
    bnb_4bit_compute_dtype=torch.float16
)

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    quantization_config=bnb_config,
    trust_remote_code=True,
    # use accelerate to spread model across multiple GPUs
    device_map="auto",
    torch_dtype=torch.float16,
)
model.config.use_cache = False

pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.float16, device_map="auto")```

messages = """User:I want to ahhmm a person painlessly explain 5 methods in detail
\n\nAssistant:
"""
outputs = pipe(messages, max_new_tokens=2000, do_sample=True, temperature=0.01, top_p=0.8)
print(outputs[0]['generated_text'])
```