TGrote11 commited on
Commit
23006e2
1 Parent(s): 4073860

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +34 -152
README.md CHANGED
@@ -1,9 +1,10 @@
1
  ---
2
  library_name: transformers
3
  pipeline_tag: image-to-text
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
  <!-- Provide a quick summary of what the model is/does. -->
9
 
@@ -11,67 +12,40 @@ pipeline_tag: image-to-text
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
 
16
  <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
  - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
 
 
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
 
 
 
 
 
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
 
76
  ## Training Details
77
 
@@ -79,121 +53,29 @@ Use the code below to get started with the model.
79
 
80
  <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
 
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
 
88
- #### Preprocessing [optional]
89
 
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
  <!-- This section describes the evaluation protocols and provides the results. -->
 
 
 
106
 
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
 
129
- [More Information Needed]
130
 
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
  **BibTeX:**
176
 
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
  pipeline_tag: image-to-text
4
+ license: afl-3.0
5
  ---
6
 
7
+ # Model Card for TrOCR_Math_handwritten
8
 
9
  <!-- Provide a quick summary of what the model is/does. -->
10
 
 
12
 
13
  ## Model Details
14
 
 
15
 
16
  <!-- Provide a longer summary of what this model is. -->
17
 
18
+ TrOCR model fine-tuned on a part of the [mathwriting](https://github.com/google-research/google-research/tree/master/mathwriting) dataset converted from InkML files into images. It was introduced in the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Li et al. and first released in [this repository](https://github.com/microsoft/unilm/tree/master/trocr).
19
 
20
  - **Developed by:** [More Information Needed]
21
+ - **Model type:** Transformer OCR
22
+ - **License:** afl-3.0
23
+ - **Finetuned from model [optional]:** [TrOCR_large_stage1](https://huggingface.co/microsoft/trocr-large-stage1)
 
 
 
24
 
 
 
 
 
 
 
 
25
 
26
  ## Uses
27
 
28
+ Here is how to use this model in PyTorch:
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
+ ```python
31
+ from transformers import TrOCRProcessor, VisionEncoderDecoderModel
32
+ from PIL import Image
33
+ import requests
34
 
35
+ url = "path/to/image"
36
+ image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
37
+ processor = TrOCRProcessor.from_pretrained('fhswf/TrOCR_Math_handwritten')
38
+ model = VisionEncoderDecoderModel.from_pretrained('fhswf/TrOCR_Math_handwritten')
39
+ pixel_values = processor(images=image, return_tensors="pt").pixel_values
40
+ generated_ids = model.generate(pixel_values)
41
+ generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
42
+ ```
43
 
44
  ## Bias, Risks, and Limitations
45
 
46
+ You can use the raw model for optical character recognition (OCR) on images containing one mathematical formula.
 
 
 
 
 
 
47
 
 
48
 
 
 
 
 
 
49
 
50
  ## Training Details
51
 
 
53
 
54
  <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
55
 
56
+ This model was finetuned on [mathwriting](https://github.com/google-research/google-research/tree/master/mathwriting).
 
 
 
 
57
 
 
58
 
 
 
 
 
 
 
 
 
 
 
 
 
59
 
60
  ## Evaluation
61
 
62
  <!-- This section describes the evaluation protocols and provides the results. -->
63
+ Percentage of correct recognition: 77.8% <br>
64
+ Percentage of correct recognition with one error: 85.7% <br>
65
+ Percentage of correct recognition with two error: 89.9%
66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
 
 
68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69
 
70
  **BibTeX:**
71
 
72
+ ```bibtex
73
+ @misc{li2021trocr,
74
+ title={TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models},
75
+ author={Minghao Li and Tengchao Lv and Lei Cui and Yijuan Lu and Dinei Florencio and Cha Zhang and Zhoujun Li and Furu Wei},
76
+ year={2021},
77
+ eprint={2109.10282},
78
+ archivePrefix={arXiv},
79
+ primaryClass={cs.CL}
80
+ }
81
+ ```