--- language: - sv license: apache-2.0 tags: - i-dont-know-what-im-doing - generated_from_trainer datasets: - fimster/NST_small_whisper metrics: - wer model-index: - name: Whisper Small sv-SE NST - Lab 2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: NST Swedish ASR type: fimster/NST_small_whisper config: speech split: None args: 'config: speech, split: test' metrics: - name: Wer type: wer value: 10.167794316644112 --- # Whisper Small sv-SE NST - Lab 2 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the NST Swedish ASR dataset. It achieves the following results on the evaluation set: - Loss: 0.1305 - Wer: 10.1678 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1635 | 0.67 | 1000 | 0.1694 | 13.4993 | | 0.07 | 1.33 | 2000 | 0.1431 | 11.3802 | | 0.0597 | 2.0 | 3000 | 0.1302 | 10.4682 | | 0.0193 | 2.67 | 4000 | 0.1305 | 10.1678 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2