jamesr66a's picture
4:3 aspect ratio
11180fd
import torch
import io
from fireworks.flumina import FluminaModule, main as flumina_main
from fireworks.flumina.route import post
import pydantic
from pydantic import BaseModel
from fastapi import File, Form, Header, UploadFile, HTTPException
from fastapi.responses import Response
import math
import os
import re
import PIL.Image as Image
from typing import Dict, Optional, Set, Tuple
from diffusers import FluxPipeline, FluxControlNetPipeline, FluxControlNetModel
from diffusers.models import FluxMultiControlNetModel
# Util
def _aspect_ratio_to_width_height(aspect_ratio: str) -> Tuple[int, int]:
"""
Convert specified aspect ratio to a height/width pair.
"""
if ":" not in aspect_ratio:
raise ValueError(
f"Invalid aspect ratio: {aspect_ratio}. Aspect ratio must be in w:h format, e.g. 16:9"
)
w, h = aspect_ratio.split(":")
try:
w, h = int(w), int(h)
except ValueError:
raise ValueError(
f"Invalid aspect ratio: {aspect_ratio}. Aspect ratio must be in w:h format, e.g. 16:9"
)
valid_aspect_ratios = [
(1, 1),
(21, 9),
(16, 9),
(3, 2),
(4, 3),
(5, 4),
(4, 5),
(3, 4),
(2, 3),
(9, 16),
(9, 21),
]
if (w, h) not in valid_aspect_ratios:
raise ValueError(
f"Invalid aspect ratio: {aspect_ratio}. Aspect ratio must be one of {valid_aspect_ratios}"
)
# We consider megapixel not 10^6 pixels but 2^20 (1024x1024) pixels
TARGET_SIZE_MP = 1
target_size = TARGET_SIZE_MP * 2**20
width = math.sqrt(target_size / (w * h)) * w
height = math.sqrt(target_size / (w * h)) * h
PAD_MULTIPLE = 64
if PAD_MULTIPLE:
width = width // PAD_MULTIPLE * PAD_MULTIPLE
height = height // PAD_MULTIPLE * PAD_MULTIPLE
return int(width), int(height)
def encode_image(
image: Image.Image, mime_type: str, jpeg_quality: int = 95
) -> bytes:
buffered = io.BytesIO()
if mime_type == "image/jpeg":
if jpeg_quality < 0 or jpeg_quality > 100:
raise ValueError(
f"jpeg_quality must be between 0 and 100, not {jpeg_quality}"
)
image.save(buffered, format="JPEG", quality=jpeg_quality)
elif mime_type == "image/png":
image.save(buffered, format="PNG")
else:
raise ValueError(f"invalid mime_type {mime_type}")
return buffered.getvalue()
def parse_accept_header(accept: str) -> str:
# Split the string into the comma-separated components
parts = accept.split(",")
weighted_types = []
for part in parts:
# Use a regular expression to extract the media type and the optional q-factor
match = re.match(
r"(?P<media_type>[^;]+)(;q=(?P<q_factor>\d+(\.\d+)?))?", part.strip()
)
if match:
media_type = match.group("media_type").strip()
q_factor = (
float(match.group("q_factor")) if match.group("q_factor") else 1.0
)
weighted_types.append((media_type, q_factor))
else:
raise ValueError(f"Malformed Accept header value: {part.strip()}")
# Sort the media types by q-factor, descending
sorted_types = sorted(weighted_types, key=lambda x: x[1], reverse=True)
# Define a list of supported MIME types
supported_types = ["image/jpeg", "image/png"]
for media_type, _ in sorted_types:
if media_type in supported_types:
return media_type
elif media_type == "*/*":
return supported_types[0] # Default to the first supported type
elif media_type == "image/*":
# If "image/*" is specified, return the first matching supported image type
return supported_types[0]
raise ValueError(f"Accept header did not include any supported MIME types: {supported_types}")
# Define your request and response schemata here
class Text2ImageRequest(BaseModel):
prompt: str
aspect_ratio: str = "16:9"
guidance_scale: float = 3.5
num_inference_steps: int = 4
seed: int = 0
class Error(BaseModel):
object: str = "error"
type: str = "invalid_request_error"
message: str
class ErrorResponse(BaseModel):
error: Error = pydantic.Field(default_factory=Error)
class BillingInfo(BaseModel):
steps: int
height: int
width: int
is_control_net: bool
class FluminaModule(FluminaModule):
def __init__(self):
super().__init__()
self.hf_model = FluxPipeline.from_pretrained('./data', torch_dtype=torch.bfloat16)
self.hf_model.to(device='cuda', dtype=torch.bfloat16)
# Map from resource qualname to pipeline
self.cnet_union_pipes: Dict[str, FluxControlNetPipeline] = {}
# Optional resource qualname to specify which Controlnet Union pipeline
# is active
self.active_cnet_union: Optional[str] = None
self.lora_adapters: Set[str] = set()
self.active_lora_adapter: Optional[str] = None
self._test_return_sync_response = False
def _error_response(self, code: int, message: str) -> Response:
response_json = ErrorResponse(
error=Error(message=message),
).json()
if self._test_return_sync_response:
return response_json
else:
return Response(
response_json,
status_code=code,
media_type="application/json",
)
def _image_response(self, img: Image.Image, mime_type: str, billing_info: BillingInfo):
image_bytes = encode_image(img, mime_type)
if self._test_return_sync_response:
return image_bytes
else:
headers = {'Fireworks-Billing-Properties': billing_info.json()}
return Response(image_bytes, status_code=200, media_type=mime_type, headers=headers)
@post('/text_to_image')
async def text_to_image(
self,
body: Text2ImageRequest,
accept: str = Header("image/jpeg"),
):
mime_type = parse_accept_header(accept)
width, height = _aspect_ratio_to_width_height(body.aspect_ratio)
img = self.hf_model(
prompt=body.prompt,
height=height,
width=width,
guidance_scale=body.guidance_scale,
num_inference_steps=body.num_inference_steps,
generator=torch.Generator('cuda').manual_seed(body.seed),
)
assert len(img.images) == 1, len(img.images)
billing_info = BillingInfo(
steps=body.num_inference_steps,
height=height,
width=width,
is_control_net=False,
)
return self._image_response(img.images[0], mime_type, billing_info)
@post('/control_net')
async def control_net(
self,
prompt: str = Form(...),
control_image: UploadFile = File(...),
control_mode: int = Form(...),
aspect_ratio: str = Form("16:9"),
guidance_scale: float = Form(3.5),
num_inference_steps: int = Form(4),
seed: int = Form(0),
# ControlNet Parameters
controlnet_conditioning_scale: Optional[float] = Form(1.0),
accept: str = Header("image/jpeg"),
):
mime_type = parse_accept_header(accept)
if self.active_cnet_union is None:
return self._error_response(400, f"Must call `/control_net` endpoint with a ControlNet model specified in the URI")
if control_mode is None:
return self._error_response(400, f"control_mode must be specified when calling a ControlNet model")
# Read and convert the control image to a PIL Image object
try:
image_data = await control_image.read()
pil_image = Image.open(io.BytesIO(image_data))
except Exception as e:
return self._error_response(400, f"Invalid image format: {e}")
width, height = _aspect_ratio_to_width_height(aspect_ratio)
img = self.cnet_union_pipes[self.active_cnet_union](
prompt=prompt,
control_image=[pil_image],
control_mode=[control_mode],
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
controlnet_conditioning_scale=[controlnet_conditioning_scale],
generator=torch.Generator('cuda').manual_seed(seed),
)
assert len(img.images) == 1, len(img.images)
billing_info = BillingInfo(
steps=num_inference_steps,
height=height,
width=width,
is_control_net=True,
)
return self._image_response(img.images[0], mime_type, billing_info)
@property
def supported_addon_types(self):
return ['controlnet_union', 'lora']
# Addon interface
def load_addon(
self, addon_account_id: str, addon_model_id: str, addon_type: str, addon_data_path: os.PathLike
):
if addon_type not in self.supported_addon_types:
raise ValueError(f"Invalid addon type {addon_type}. Supported types: {self.supported_addon_types}")
qualname = f"accounts/{addon_account_id}/models/{addon_model_id}"
if addon_type == 'controlnet_union':
cnet_model = FluxControlNetModel.from_pretrained(addon_data_path)
multi_cnet_model = FluxMultiControlNetModel([cnet_model])
multi_cnet_model.to(device='cuda', dtype=torch.bfloat16)
self.cnet_union_pipes[qualname] = FluxControlNetPipeline(
scheduler=self.hf_model.scheduler,
vae=self.hf_model.vae,
text_encoder=self.hf_model.text_encoder,
tokenizer=self.hf_model.tokenizer,
text_encoder_2=self.hf_model.text_encoder_2,
tokenizer_2=self.hf_model.tokenizer_2,
transformer=self.hf_model.transformer,
controlnet=multi_cnet_model,
)
elif addon_type == 'lora':
self.hf_model.load_lora_weights(addon_data_path, adapter_name=qualname)
self.lora_adapters.add(qualname)
else:
raise NotImplementedError(f'Addon support for type {addon_type} not implemented')
def unload_addon(
self, addon_account_id: str, addon_model_id: str, addon_type: str
):
qualname = f"accounts/{addon_account_id}/models/{addon_model_id}"
if addon_type == 'controlnet_union':
assert qualname in self.cnet_union_pipes
self.cnet_union_pipes.pop(qualname)
elif addon_type == 'lora':
assert qualname in self.lora_adapters
self.hf_model.delete_adapters([qualname])
self.lora_adapters.remove(qualname)
else:
raise NotImplementedError(f'Addon support for type {addon_type} not implemented')
def activate_addon(self, addon_account_id: str, addon_model_id: str):
qualname = f"accounts/{addon_account_id}/models/{addon_model_id}"
if qualname in self.cnet_union_pipes:
if self.active_cnet_union is not None:
raise ValueError(f"ControlNet Union {self.active_cnet_union} already active. Multi-controlnet union not supported!")
self.active_cnet_union = qualname
return
if qualname in self.lora_adapters:
if self.active_lora_adapter is not None:
raise ValueError(f"LoRA adapter {self.active_lora_adapter} already active. Multi-LoRA not yet supported")
self.active_lora_adapter = qualname
return
raise ValueError(f"Unknown addon {qualname}")
def deactivate_addon(self, addon_account_id: str, addon_model_id: str):
qualname = f"accounts/{addon_account_id}/models/{addon_model_id}"
if self.active_cnet_union == qualname:
self.active_cnet_union = None
elif self.active_lora_adapter == qualname:
self.active_lora_adapter = None
else:
raise AssertionError(f'Addon {qualname} not loaded!')
if __name__ == "__flumina_main__":
f = FluminaModule()
flumina_main(f)
if __name__ == "__main__":
f = FluminaModule()
f._test_return_sync_response = True
import asyncio
# Test text-to-image
t2i_out = asyncio.run(f.text_to_image(
Text2ImageRequest(
prompt="A quick brown fox",
aspect_ratio="4:3",
guidance_scale=3.5,
num_inference_steps=4,
seed=0,
),
accept="*/*",
))
assert isinstance(t2i_out, bytes), t2i_out
with open('output.png', 'wb') as out_file:
out_file.write(t2i_out)
# Test ControlNet
cn_adapter_path = os.environ.get('CONTROLNET_ADAPTER_PATH', None)
if cn_adapter_path is not None:
addon_acct_id, addon_model_id = "fireworks", "test_controlnet"
f.load_addon(addon_acct_id, addon_model_id, "controlnet_union", cn_adapter_path)
f.activate_addon(addon_acct_id, addon_model_id)
import cv2
class FakeFile:
def __init__(self, filename):
self.filename = filename
async def read(self):
image = cv2.imread(self.filename)
# Check if the image is loaded correctly
if image is None:
raise ValueError("Image not found or unable to open.")
# Apply GaussianBlur to reduce noise and avoid false edge detection
blurred_image = cv2.GaussianBlur(image, (5, 5), 1.4)
# Perform Canny edge detection
edges = cv2.Canny(blurred_image, threshold1=0, threshold2=50)
control_image = Image.fromarray(edges).convert("RGB")
bio = io.BytesIO()
control_image.save(bio, format="PNG")
bio.seek(0)
return bio.getvalue()
cn_out = asyncio.run(f.control_net(
prompt="Cyberpunk future fox nighttime purple and green",
control_image=FakeFile('output.png'),
control_mode=0, # canny
aspect_ratio="4:3",
guidance_scale=3.5,
num_inference_steps=4,
seed=0,
controlnet_conditioning_scale=1.0,
accept="image/png",
))
assert isinstance(cn_out, bytes), cn_out
f.deactivate_addon(addon_acct_id, addon_model_id)
f.unload_addon(addon_acct_id, addon_model_id, "controlnet_union")
with open('output_cn.png', 'wb') as cn_out_file:
cn_out_file.write(cn_out)
else:
print('Skipping ControlNet test. Set CONTROLNET_ADAPTER_PATH to enable it.')
lora_adapter_path = os.environ.get('LORA_ADAPTER_PATH', None)
if lora_adapter_path is not None:
addon_acct_id, addon_model_id = "fireworks", "test_lora"
f.load_addon(addon_acct_id, addon_model_id, "lora", lora_adapter_path)
f.activate_addon(addon_acct_id, addon_model_id)
lora_out = asyncio.run(f.text_to_image(
Text2ImageRequest(
prompt="A quick brown fox",
aspect_ratio="4:3",
guidance_scale=3.5,
num_inference_steps=4,
seed=0,
),
accept="image/jpeg;image/png",
))
assert isinstance(lora_out, bytes), lora_out
f.deactivate_addon(addon_acct_id, addon_model_id)
f.unload_addon(addon_acct_id, addon_model_id, "lora")
with open('output_lora.png', 'wb') as lora_out_file:
lora_out_file.write(lora_out)
else:
print('Skipping ControlNet test. Set LORA_ADAPTER_PATH to enable it.')