Update README.md
Browse files
README.md
CHANGED
@@ -30,45 +30,64 @@ ViPE: Visualize Pretty-much Everything, is the first automated model for transla
|
|
30 |
- **Paper:** [EMNLP2023](https://2023.emnlp.org/program/)
|
31 |
- **Demo:**[ViPE Videos] (youtube link)
|
32 |
|
33 |
-
## Uses
|
34 |
-
|
35 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
36 |
|
37 |
### Direct Use
|
38 |
|
39 |
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
40 |
|
41 |
-
|
42 |
|
43 |
-
### Downstream Use [optional]
|
44 |
|
45 |
-
|
|
|
46 |
|
47 |
-
[More Information Needed]
|
48 |
|
49 |
-
|
|
|
|
|
|
|
50 |
|
51 |
-
|
|
|
52 |
|
53 |
-
|
|
|
54 |
|
55 |
-
|
|
|
|
|
56 |
|
57 |
-
|
58 |
|
59 |
-
|
|
|
|
|
60 |
|
61 |
-
|
|
|
|
|
62 |
|
63 |
-
|
|
|
64 |
|
65 |
-
|
|
|
|
|
66 |
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
-
Use the code below to get started with the model.
|
70 |
|
71 |
-
[More Information Needed]
|
72 |
|
73 |
## Training Details
|
74 |
|
|
|
30 |
- **Paper:** [EMNLP2023](https://2023.emnlp.org/program/)
|
31 |
- **Demo:**[ViPE Videos] (youtube link)
|
32 |
|
|
|
|
|
|
|
33 |
|
34 |
### Direct Use
|
35 |
|
36 |
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
37 |
|
38 |
+
you can directly use the model to generate detailed prompts for any arbitrary text.
|
39 |
|
|
|
40 |
|
41 |
+
```python
|
42 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
43 |
|
|
|
44 |
|
45 |
+
def generate(text, model, tokenizer,device,do_sample,top_k=100, epsilon_cutoff=.00005, temperature=1):
|
46 |
+
#mark the text with special tokens
|
47 |
+
text=[tokenizer.eos_token + i + tokenizer.eos_token for i in text]
|
48 |
+
batch=tokenizer(text, padding=True, return_tensors="pt")
|
49 |
|
50 |
+
input_ids = batch["input_ids"].to(device)
|
51 |
+
attention_mask = batch["attention_mask"].to(device)
|
52 |
|
53 |
+
#how many new tokens to generate at max
|
54 |
+
max_prompt_length=50
|
55 |
|
56 |
+
generated_ids = model.generate(input_ids=input_ids,attention_mask=attention_mask, max_new_tokens=max_prompt_length, do_sample=do_sample,top_k=top_k, epsilon_cutoff=epsilon_cutoff, temperature=temperature)
|
57 |
+
#return only the generated prompts
|
58 |
+
pred_caps = tokenizer.batch_decode(generated_ids[:, -(generated_ids.shape[1] - input_ids.shape[1]):], skip_special_tokens=True)
|
59 |
|
60 |
+
return pred_caps
|
61 |
|
62 |
+
device='cpu'
|
63 |
+
model = GPT2LMHeadModel.from_pretrained('fittar/ViPE-M-CTX7')
|
64 |
+
model.to(device)
|
65 |
|
66 |
+
#ViPE-M's tokenizer is identical to that of GPT2-Medium
|
67 |
+
tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium')
|
68 |
+
tokenizer.pad_token = tokenizer.eos_token
|
69 |
|
70 |
+
# A list of abstract/figurative or any arbitrary combinations of keywords
|
71 |
+
texts=['lalala', 'I wanna start learning', 'free your mind; you will see the other side of life', 'brave; fantasy']
|
72 |
|
73 |
+
prompts=generate(texts,model,tokenizer,do_sample=True,device=device)
|
74 |
+
for t,p in zip(texts,prompts):
|
75 |
+
print('{} --> {}'.format(t,p))
|
76 |
|
77 |
+
lalala --> A group of people chanting "la la la" around a bonfire on a beach at night
|
78 |
+
I wanna start learning --> A child sitting in a library surrounded by books, excitedly flipping through pages of a book
|
79 |
+
free your mind; you will see the other side of life --> An astronaut floating in space with a sense of floating weightlessness, looking down towards the earth
|
80 |
+
brave; fantasy --> A brave knight with shining armor fighting a fierce dragon in a misty forest
|
81 |
+
|
82 |
+
```
|
83 |
+
|
84 |
+
|
85 |
+
### Recommendations
|
86 |
+
|
87 |
+
For combining multiple keywords, separate them using a comma. for example ['dark, fantasy, brave']
|
88 |
+
for phrases or sentences, a semicolon is preferable. For example ['This is gonna be the best day of my life; do you agree?']
|
89 |
|
|
|
90 |
|
|
|
91 |
|
92 |
## Training Details
|
93 |
|