--- language: - en --- # ViPE-M-CTX7 ViPE: Visualize Pretty-much Everything, is the first automated model for translating any arbitraty piece of text into a visualizable prompt. It helps any text-to-image model in figurative or non-lexical language visualizations. ## Model Details ### Model Description - **Developed by:** [Computer Graphics Group, University of Tuebingen](https://uni-tuebingen.de/fakultaeten/mathematisch-naturwissenschaftliche-fakultaet/fachbereiche/informatik/lehrstuehle/computergrafik/lehrstuhl/) - **Model type:** Auto-Regressive - **Language:** English - **License:** [MIT License for Non-Commercial Use](https://github.com/Hazel1994/ViPE/blob/main/LICENSE) ### Model Sources - **Repository:** [Github](https://github.com/Hazel1994/ViPE) - **Paper:** [EMNLP2023](https://2023.emnlp.org/program/) - **Demo:**[ViPE Videos] (youtube link) ### Direct Use You can directly use the model to generate detailed prompts for any arbitrary text. ```python from transformers import GPT2LMHeadModel, GPT2Tokenizer def generate(text, model, tokenizer,device,do_sample,top_k=100, epsilon_cutoff=.00005, temperature=1): #mark the text with special tokens text=[tokenizer.eos_token + i + tokenizer.eos_token for i in text] batch=tokenizer(text, padding=True, return_tensors="pt") input_ids = batch["input_ids"].to(device) attention_mask = batch["attention_mask"].to(device) #how many new tokens to generate at max max_prompt_length=50 generated_ids = model.generate(input_ids=input_ids,attention_mask=attention_mask, max_new_tokens=max_prompt_length, do_sample=do_sample,top_k=top_k, epsilon_cutoff=epsilon_cutoff, temperature=temperature) #return only the generated prompts pred_caps = tokenizer.batch_decode(generated_ids[:, -(generated_ids.shape[1] - input_ids.shape[1]):], skip_special_tokens=True) return pred_caps device='cpu' model = GPT2LMHeadModel.from_pretrained('fittar/ViPE-M-CTX7') model.to(device) #ViPE-M's tokenizer is identical to that of GPT2-Medium tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium') tokenizer.pad_token = tokenizer.eos_token # A list of abstract/figurative or any arbitrary combinations of keywords texts=['lalala', 'I wanna start learning', 'free your mind; you will see the other side of life', 'brave; fantasy'] prompts=generate(texts,model,tokenizer,do_sample=True,device=device) for t,p in zip(texts,prompts): print('{} --> {}'.format(t,p)) lalala --> A group of people chanting "la la la" around a bonfire on a beach at night I wanna start learning --> A child sitting in a library surrounded by books, excitedly flipping through pages of a book free your mind; you will see the other side of life --> An astronaut floating in space with a sense of floating weightlessness, looking down towards the earth brave; fantasy --> A brave knight with shining armor fighting a fierce dragon in a misty forest ``` ### Recommendations For combining multiple keywords, separate them using a comma. for example ['dark, fantasy, brave']. For phrases or sentences, a semicolon is preferable. For example ['This is gonna be the best day of my life; do you agree?']. ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]