--- language: - en pipeline_tag: text2text-generation inference: false --- # ViPE-S-CTX7 ViPE: Visualize Pretty-much Everything, is the first automated model for translating any arbitrary piece of text into a visualizable prompt. It helps any text-to-image model in figurative or non-lexical language visualizations. ### Model Description - **Developed by:** [Computer Graphics Group, University of Tuebingen](https://uni-tuebingen.de/fakultaeten/mathematisch-naturwissenschaftliche-fakultaet/fachbereiche/informatik/lehrstuehle/computergrafik/lehrstuhl/) - **Model type:** Auto-Regressive - **Language:** English - **License:** [MIT License for Non-Commercial Use](https://github.com/Hazel1994/ViPE/blob/main/LICENSE) - **Based on:** [GPT2-Small](https://huggingface.co/gpt2) - **Versions:** [ViPE-M-CTX7](https://huggingface.co/fittar/ViPE-M-CTX7) (355M parameters) and [ViPE-S-CTX7](https://huggingface.co/fittar/ViPE-S-CTX7) (117M parameters), ### Model Sources - **Repository:** [Github](https://github.com/Hazel1994/ViPE) - **Paper:** [EMNLP2023](https://2023.emnlp.org/program/) ### Down Stream Applications ViPE provides a robust backbone for many practical applications such as music video generation and creative writing. - #### Music Video Genrations - **Repository:** [Github](https://github.com/Hazel1994/ViPE) - **Demo:** [ViPE Videos](youtube link) - #### Creative Writing - **Demo:** [Hugging Face Playground](https://huggingface.co/spaces/fittar/ViPE) ### Direct Use You can directly use the model to generate detailed prompts for any arbitrary text. ```python from transformers import GPT2LMHeadModel, GPT2Tokenizer def generate(text, model, tokenizer,device,do_sample,top_k=100, epsilon_cutoff=.00005, temperature=1): #mark the text with special tokens text=[tokenizer.eos_token + i + tokenizer.eos_token for i in text] batch=tokenizer(text, padding=True, return_tensors="pt") input_ids = batch["input_ids"].to(device) attention_mask = batch["attention_mask"].to(device) #how many new tokens to generate at max max_prompt_length=50 generated_ids = model.generate(input_ids=input_ids,attention_mask=attention_mask, max_new_tokens=max_prompt_length, do_sample=do_sample,top_k=top_k, epsilon_cutoff=epsilon_cutoff, temperature=temperature) #return only the generated prompts pred_caps = tokenizer.batch_decode(generated_ids[:, -(generated_ids.shape[1] - input_ids.shape[1]):], skip_special_tokens=True) return pred_caps device='cpu' model = GPT2LMHeadModel.from_pretrained('fittar/ViPE-S-CTX7') model.to(device) #ViPE-M's tokenizer is identical to that of GPT2-Medium tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium') tokenizer.pad_token = tokenizer.eos_token # A list of abstract/figurative or any arbitrary combinations of keywords texts=['lalala', 'I wanna start learning', 'free your mind; you will see the other side of life', 'brave; fantasy'] prompts=generate(texts,model,tokenizer,do_sample=True,device=device) for t,p in zip(texts,prompts): print('{} --> {}'.format(t,p)) ``` ### Recommendations You can use either a comma or a semicolon to combine multiple keywords. for example ['dark, fantasy, brave'] or ['This is gonna be the best day of my life; do you agree?']. However, a semicolon draws a stronger boundary between the keywords and encourages the model to transfer the last keyword in a given context (previous keywords). ## Training Details ### Training Data [More Information Needed] ### Training Procedure ## Evaluation ## Citation If you find ViPE useful, please cite our paper. ## Model Card Contact [Hassan Shahmohammadi](https://fittar.me/)