File size: 58,473 Bytes
db56834 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 |
2021-01-20 22:30:34,817 ----------------------------------------------------------------------------------------------------
2021-01-20 22:30:34,820 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): XLMRobertaModel(
(embeddings): RobertaEmbeddings(
(word_embeddings): Embedding(250002, 1024, padding_idx=1)
(position_embeddings): Embedding(514, 1024, padding_idx=1)
(token_type_embeddings): Embedding(1, 1024)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): RobertaEncoder(
(layer): ModuleList(
(0): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(1): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(2): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(3): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(4): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(5): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(6): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(7): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(8): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(9): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(10): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(11): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(12): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(13): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(14): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(15): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(16): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(17): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(18): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(19): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(20): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(21): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(22): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(23): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): RobertaPooler(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(activation): Tanh()
)
)
)
(word_dropout): WordDropout(p=0.05)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=1024, out_features=20, bias=True)
(beta): 1.0
(weights): None
(weight_tensor) None
)"
2021-01-20 22:30:34,821 ----------------------------------------------------------------------------------------------------
2021-01-20 22:30:34,821 Corpus: "Corpus: 16093 train + 2969 dev + 5314 test sentences"
2021-01-20 22:30:34,821 ----------------------------------------------------------------------------------------------------
2021-01-20 22:30:34,821 Parameters:
2021-01-20 22:30:34,821 - learning_rate: "5e-06"
2021-01-20 22:30:34,821 - mini_batch_size: "4"
2021-01-20 22:30:34,821 - patience: "3"
2021-01-20 22:30:34,821 - anneal_factor: "0.5"
2021-01-20 22:30:34,822 - max_epochs: "20"
2021-01-20 22:30:34,822 - shuffle: "True"
2021-01-20 22:30:34,822 - train_with_dev: "True"
2021-01-20 22:30:34,822 - batch_growth_annealing: "False"
2021-01-20 22:30:34,822 ----------------------------------------------------------------------------------------------------
2021-01-20 22:30:34,822 Model training base path: "resources/contextdrop/flert-nl-ft+dev-xlm-roberta-large-context+drop-64-True-127"
2021-01-20 22:30:34,822 ----------------------------------------------------------------------------------------------------
2021-01-20 22:30:34,822 Device: cuda:0
2021-01-20 22:30:34,822 ----------------------------------------------------------------------------------------------------
2021-01-20 22:30:34,822 Embeddings storage mode: none
2021-01-20 22:30:34,833 ----------------------------------------------------------------------------------------------------
2021-01-20 22:34:24,138 epoch 1 - iter 476/4766 - loss 0.75007446 - samples/sec: 8.30 - lr: 0.000005
2021-01-20 22:38:11,813 epoch 1 - iter 952/4766 - loss 0.55138470 - samples/sec: 8.36 - lr: 0.000005
2021-01-20 22:42:03,548 epoch 1 - iter 1428/4766 - loss 0.46882800 - samples/sec: 8.22 - lr: 0.000005
2021-01-20 22:45:56,496 epoch 1 - iter 1904/4766 - loss 0.42568348 - samples/sec: 8.17 - lr: 0.000005
2021-01-20 22:49:48,705 epoch 1 - iter 2380/4766 - loss 0.40460601 - samples/sec: 8.20 - lr: 0.000005
2021-01-20 22:53:40,511 epoch 1 - iter 2856/4766 - loss 0.38479376 - samples/sec: 8.21 - lr: 0.000005
2021-01-20 22:57:31,693 epoch 1 - iter 3332/4766 - loss 0.36783532 - samples/sec: 8.24 - lr: 0.000005
2021-01-20 23:01:24,894 epoch 1 - iter 3808/4766 - loss 0.35297261 - samples/sec: 8.17 - lr: 0.000005
2021-01-20 23:05:16,842 epoch 1 - iter 4284/4766 - loss 0.33562353 - samples/sec: 8.21 - lr: 0.000005
2021-01-20 23:09:08,356 epoch 1 - iter 4760/4766 - loss 0.32624764 - samples/sec: 8.22 - lr: 0.000005
2021-01-20 23:09:11,043 ----------------------------------------------------------------------------------------------------
2021-01-20 23:09:11,044 EPOCH 1 done: loss 0.3260 - lr 0.0000050
2021-01-20 23:09:11,044 BAD EPOCHS (no improvement): 4
2021-01-20 23:09:11,056 ----------------------------------------------------------------------------------------------------
2021-01-20 23:13:02,174 epoch 2 - iter 476/4766 - loss 0.19592687 - samples/sec: 8.24 - lr: 0.000005
2021-01-20 23:16:52,896 epoch 2 - iter 952/4766 - loss 0.19343522 - samples/sec: 8.25 - lr: 0.000005
2021-01-20 23:20:44,314 epoch 2 - iter 1428/4766 - loss 0.19096819 - samples/sec: 8.23 - lr: 0.000005
2021-01-20 23:24:34,798 epoch 2 - iter 1904/4766 - loss 0.20419720 - samples/sec: 8.26 - lr: 0.000005
2021-01-20 23:28:25,592 epoch 2 - iter 2380/4766 - loss 0.20562715 - samples/sec: 8.25 - lr: 0.000005
2021-01-20 23:32:18,034 epoch 2 - iter 2856/4766 - loss 0.21479885 - samples/sec: 8.19 - lr: 0.000005
2021-01-20 23:36:11,088 epoch 2 - iter 3332/4766 - loss 0.22119955 - samples/sec: 8.17 - lr: 0.000005
2021-01-20 23:39:57,520 epoch 2 - iter 3808/4766 - loss 0.22084426 - samples/sec: 8.41 - lr: 0.000005
2021-01-20 23:43:40,262 epoch 2 - iter 4284/4766 - loss 0.22666022 - samples/sec: 8.55 - lr: 0.000005
2021-01-20 23:47:22,340 epoch 2 - iter 4760/4766 - loss 0.22898245 - samples/sec: 8.57 - lr: 0.000005
2021-01-20 23:47:24,928 ----------------------------------------------------------------------------------------------------
2021-01-20 23:47:24,928 EPOCH 2 done: loss 0.2291 - lr 0.0000049
2021-01-20 23:47:24,928 BAD EPOCHS (no improvement): 4
2021-01-20 23:47:24,932 ----------------------------------------------------------------------------------------------------
2021-01-20 23:51:06,331 epoch 3 - iter 476/4766 - loss 0.17300695 - samples/sec: 8.60 - lr: 0.000005
2021-01-20 23:54:48,800 epoch 3 - iter 952/4766 - loss 0.18720678 - samples/sec: 8.56 - lr: 0.000005
2021-01-20 23:58:33,629 epoch 3 - iter 1428/4766 - loss 0.18315013 - samples/sec: 8.47 - lr: 0.000005
2021-01-21 00:02:15,888 epoch 3 - iter 1904/4766 - loss 0.18674032 - samples/sec: 8.57 - lr: 0.000005
2021-01-21 00:05:57,520 epoch 3 - iter 2380/4766 - loss 0.19216686 - samples/sec: 8.59 - lr: 0.000005
2021-01-21 00:09:39,305 epoch 3 - iter 2856/4766 - loss 0.19094677 - samples/sec: 8.59 - lr: 0.000005
2021-01-21 00:13:20,604 epoch 3 - iter 3332/4766 - loss 0.18956430 - samples/sec: 8.60 - lr: 0.000005
2021-01-21 00:17:01,961 epoch 3 - iter 3808/4766 - loss 0.18552889 - samples/sec: 8.60 - lr: 0.000005
2021-01-21 00:20:43,755 epoch 3 - iter 4284/4766 - loss 0.18237621 - samples/sec: 8.59 - lr: 0.000005
2021-01-21 00:24:26,424 epoch 3 - iter 4760/4766 - loss 0.18548491 - samples/sec: 8.55 - lr: 0.000005
2021-01-21 00:24:29,094 ----------------------------------------------------------------------------------------------------
2021-01-21 00:24:29,094 EPOCH 3 done: loss 0.1856 - lr 0.0000047
2021-01-21 00:24:29,094 BAD EPOCHS (no improvement): 4
2021-01-21 00:24:29,113 ----------------------------------------------------------------------------------------------------
2021-01-21 00:28:10,733 epoch 4 - iter 476/4766 - loss 0.16395309 - samples/sec: 8.59 - lr: 0.000005
2021-01-21 00:31:51,536 epoch 4 - iter 952/4766 - loss 0.15725064 - samples/sec: 8.62 - lr: 0.000005
2021-01-21 00:35:32,411 epoch 4 - iter 1428/4766 - loss 0.15046027 - samples/sec: 8.62 - lr: 0.000005
2021-01-21 00:39:11,999 epoch 4 - iter 1904/4766 - loss 0.15211000 - samples/sec: 8.67 - lr: 0.000005
2021-01-21 00:42:52,983 epoch 4 - iter 2380/4766 - loss 0.15810432 - samples/sec: 8.62 - lr: 0.000005
2021-01-21 00:46:35,874 epoch 4 - iter 2856/4766 - loss 0.15986602 - samples/sec: 8.54 - lr: 0.000005
2021-01-21 00:50:17,362 epoch 4 - iter 3332/4766 - loss 0.15994249 - samples/sec: 8.60 - lr: 0.000005
2021-01-21 00:53:58,810 epoch 4 - iter 3808/4766 - loss 0.15891707 - samples/sec: 8.60 - lr: 0.000005
2021-01-21 00:57:39,682 epoch 4 - iter 4284/4766 - loss 0.16493451 - samples/sec: 8.62 - lr: 0.000005
2021-01-21 01:01:20,887 epoch 4 - iter 4760/4766 - loss 0.16578159 - samples/sec: 8.61 - lr: 0.000005
2021-01-21 01:01:23,546 ----------------------------------------------------------------------------------------------------
2021-01-21 01:01:23,546 EPOCH 4 done: loss 0.1656 - lr 0.0000045
2021-01-21 01:01:23,546 BAD EPOCHS (no improvement): 4
2021-01-21 01:01:23,549 ----------------------------------------------------------------------------------------------------
2021-01-21 01:05:05,137 epoch 5 - iter 476/4766 - loss 0.16713775 - samples/sec: 8.59 - lr: 0.000004
2021-01-21 01:08:46,452 epoch 5 - iter 952/4766 - loss 0.15990526 - samples/sec: 8.60 - lr: 0.000004
2021-01-21 01:12:28,191 epoch 5 - iter 1428/4766 - loss 0.16156578 - samples/sec: 8.59 - lr: 0.000004
2021-01-21 01:16:08,457 epoch 5 - iter 1904/4766 - loss 0.16763724 - samples/sec: 8.64 - lr: 0.000004
2021-01-21 01:19:50,350 epoch 5 - iter 2380/4766 - loss 0.16378794 - samples/sec: 8.58 - lr: 0.000004
2021-01-21 01:23:30,578 epoch 5 - iter 2856/4766 - loss 0.16849384 - samples/sec: 8.65 - lr: 0.000004
2021-01-21 01:27:10,395 epoch 5 - iter 3332/4766 - loss 0.16382910 - samples/sec: 8.66 - lr: 0.000004
2021-01-21 01:30:51,552 epoch 5 - iter 3808/4766 - loss 0.16654785 - samples/sec: 8.61 - lr: 0.000004
2021-01-21 01:34:33,151 epoch 5 - iter 4284/4766 - loss 0.16617839 - samples/sec: 8.59 - lr: 0.000004
2021-01-21 01:38:13,465 epoch 5 - iter 4760/4766 - loss 0.16489933 - samples/sec: 8.64 - lr: 0.000004
2021-01-21 01:38:16,065 ----------------------------------------------------------------------------------------------------
2021-01-21 01:38:16,065 EPOCH 5 done: loss 0.1648 - lr 0.0000043
2021-01-21 01:38:16,066 BAD EPOCHS (no improvement): 4
2021-01-21 01:38:16,069 ----------------------------------------------------------------------------------------------------
2021-01-21 01:41:56,751 epoch 6 - iter 476/4766 - loss 0.15331536 - samples/sec: 8.63 - lr: 0.000004
2021-01-21 01:45:37,683 epoch 6 - iter 952/4766 - loss 0.16628115 - samples/sec: 8.62 - lr: 0.000004
2021-01-21 01:49:18,657 epoch 6 - iter 1428/4766 - loss 0.16559479 - samples/sec: 8.62 - lr: 0.000004
2021-01-21 01:52:59,337 epoch 6 - iter 1904/4766 - loss 0.16505749 - samples/sec: 8.63 - lr: 0.000004
2021-01-21 01:56:41,398 epoch 6 - iter 2380/4766 - loss 0.16408360 - samples/sec: 8.57 - lr: 0.000004
2021-01-21 02:00:22,782 epoch 6 - iter 2856/4766 - loss 0.16367926 - samples/sec: 8.60 - lr: 0.000004
2021-01-21 02:04:04,491 epoch 6 - iter 3332/4766 - loss 0.16323212 - samples/sec: 8.59 - lr: 0.000004
2021-01-21 02:07:46,417 epoch 6 - iter 3808/4766 - loss 0.16476110 - samples/sec: 8.58 - lr: 0.000004
2021-01-21 02:11:27,402 epoch 6 - iter 4284/4766 - loss 0.16556307 - samples/sec: 8.62 - lr: 0.000004
2021-01-21 02:15:08,877 epoch 6 - iter 4760/4766 - loss 0.16431570 - samples/sec: 8.60 - lr: 0.000004
2021-01-21 02:15:11,479 ----------------------------------------------------------------------------------------------------
2021-01-21 02:15:11,480 EPOCH 6 done: loss 0.1648 - lr 0.0000040
2021-01-21 02:15:11,480 BAD EPOCHS (no improvement): 4
2021-01-21 02:15:11,483 ----------------------------------------------------------------------------------------------------
2021-01-21 02:18:51,563 epoch 7 - iter 476/4766 - loss 0.16677021 - samples/sec: 8.65 - lr: 0.000004
2021-01-21 02:22:33,148 epoch 7 - iter 952/4766 - loss 0.15199812 - samples/sec: 8.59 - lr: 0.000004
2021-01-21 02:26:14,043 epoch 7 - iter 1428/4766 - loss 0.15998079 - samples/sec: 8.62 - lr: 0.000004
2021-01-21 02:29:54,619 epoch 7 - iter 1904/4766 - loss 0.16023978 - samples/sec: 8.63 - lr: 0.000004
2021-01-21 02:33:35,634 epoch 7 - iter 2380/4766 - loss 0.15702676 - samples/sec: 8.62 - lr: 0.000004
2021-01-21 02:37:16,548 epoch 7 - iter 2856/4766 - loss 0.15350997 - samples/sec: 8.62 - lr: 0.000004
2021-01-21 02:40:57,346 epoch 7 - iter 3332/4766 - loss 0.15488921 - samples/sec: 8.62 - lr: 0.000004
2021-01-21 02:44:38,614 epoch 7 - iter 3808/4766 - loss 0.15987947 - samples/sec: 8.61 - lr: 0.000004
2021-01-21 02:48:20,175 epoch 7 - iter 4284/4766 - loss 0.16276295 - samples/sec: 8.59 - lr: 0.000004
2021-01-21 02:52:01,908 epoch 7 - iter 4760/4766 - loss 0.16197284 - samples/sec: 8.59 - lr: 0.000004
2021-01-21 02:52:04,547 ----------------------------------------------------------------------------------------------------
2021-01-21 02:52:04,547 EPOCH 7 done: loss 0.1620 - lr 0.0000036
2021-01-21 02:52:04,547 BAD EPOCHS (no improvement): 4
2021-01-21 02:52:04,550 ----------------------------------------------------------------------------------------------------
2021-01-21 02:55:44,290 epoch 8 - iter 476/4766 - loss 0.12739570 - samples/sec: 8.67 - lr: 0.000004
2021-01-21 02:59:24,874 epoch 8 - iter 952/4766 - loss 0.13459088 - samples/sec: 8.63 - lr: 0.000004
2021-01-21 03:03:05,915 epoch 8 - iter 1428/4766 - loss 0.13249889 - samples/sec: 8.61 - lr: 0.000004
2021-01-21 03:07:51,438 epoch 8 - iter 1904/4766 - loss 0.13557002 - samples/sec: 6.67 - lr: 0.000003
2021-01-21 03:11:32,960 epoch 8 - iter 2380/4766 - loss 0.13750847 - samples/sec: 8.60 - lr: 0.000003
2021-01-21 03:15:15,240 epoch 8 - iter 2856/4766 - loss 0.13920395 - samples/sec: 8.57 - lr: 0.000003
2021-01-21 03:18:56,540 epoch 8 - iter 3332/4766 - loss 0.14196834 - samples/sec: 8.60 - lr: 0.000003
2021-01-21 03:22:38,133 epoch 8 - iter 3808/4766 - loss 0.14013979 - samples/sec: 8.59 - lr: 0.000003
2021-01-21 03:26:20,491 epoch 8 - iter 4284/4766 - loss 0.14057112 - samples/sec: 8.56 - lr: 0.000003
2021-01-21 03:30:01,506 epoch 8 - iter 4760/4766 - loss 0.13849626 - samples/sec: 8.62 - lr: 0.000003
2021-01-21 03:30:04,136 ----------------------------------------------------------------------------------------------------
2021-01-21 03:30:04,136 EPOCH 8 done: loss 0.1390 - lr 0.0000033
2021-01-21 03:30:04,136 BAD EPOCHS (no improvement): 4
2021-01-21 03:30:04,139 ----------------------------------------------------------------------------------------------------
2021-01-21 03:33:43,789 epoch 9 - iter 476/4766 - loss 0.10898947 - samples/sec: 8.67 - lr: 0.000003
2021-01-21 03:37:24,937 epoch 9 - iter 952/4766 - loss 0.13779523 - samples/sec: 8.61 - lr: 0.000003
2021-01-21 03:41:06,312 epoch 9 - iter 1428/4766 - loss 0.13999643 - samples/sec: 8.60 - lr: 0.000003
2021-01-21 03:44:48,413 epoch 9 - iter 1904/4766 - loss 0.14934964 - samples/sec: 8.57 - lr: 0.000003
2021-01-21 03:48:28,888 epoch 9 - iter 2380/4766 - loss 0.14817911 - samples/sec: 8.64 - lr: 0.000003
2021-01-21 03:52:09,651 epoch 9 - iter 2856/4766 - loss 0.14990197 - samples/sec: 8.63 - lr: 0.000003
2021-01-21 03:55:50,402 epoch 9 - iter 3332/4766 - loss 0.15379190 - samples/sec: 8.63 - lr: 0.000003
2021-01-21 03:59:32,243 epoch 9 - iter 3808/4766 - loss 0.15360767 - samples/sec: 8.58 - lr: 0.000003
2021-01-21 04:03:12,525 epoch 9 - iter 4284/4766 - loss 0.15584102 - samples/sec: 8.64 - lr: 0.000003
2021-01-21 04:06:52,524 epoch 9 - iter 4760/4766 - loss 0.15575696 - samples/sec: 8.66 - lr: 0.000003
2021-01-21 04:06:55,162 ----------------------------------------------------------------------------------------------------
2021-01-21 04:06:55,162 EPOCH 9 done: loss 0.1559 - lr 0.0000029
2021-01-21 04:06:55,162 BAD EPOCHS (no improvement): 4
2021-01-21 04:06:55,174 ----------------------------------------------------------------------------------------------------
2021-01-21 04:10:34,900 epoch 10 - iter 476/4766 - loss 0.16271080 - samples/sec: 8.67 - lr: 0.000003
2021-01-21 04:14:20,175 epoch 10 - iter 952/4766 - loss 0.16397437 - samples/sec: 8.45 - lr: 0.000003
2021-01-21 04:18:06,987 epoch 10 - iter 1428/4766 - loss 0.15725672 - samples/sec: 8.40 - lr: 0.000003
2021-01-21 04:21:49,215 epoch 10 - iter 1904/4766 - loss 0.15423771 - samples/sec: 8.57 - lr: 0.000003
2021-01-21 04:25:28,895 epoch 10 - iter 2380/4766 - loss 0.15973856 - samples/sec: 8.67 - lr: 0.000003
2021-01-21 04:29:23,464 epoch 10 - iter 2856/4766 - loss 0.16022188 - samples/sec: 8.12 - lr: 0.000003
2021-01-21 04:33:45,631 epoch 10 - iter 3332/4766 - loss 0.16116028 - samples/sec: 7.26 - lr: 0.000003
2021-01-21 04:37:33,764 epoch 10 - iter 3808/4766 - loss 0.16539610 - samples/sec: 8.35 - lr: 0.000003
2021-01-21 04:42:13,315 epoch 10 - iter 4284/4766 - loss 0.16546677 - samples/sec: 6.81 - lr: 0.000003
2021-01-21 04:45:59,709 epoch 10 - iter 4760/4766 - loss 0.16271866 - samples/sec: 8.41 - lr: 0.000003
2021-01-21 04:46:02,392 ----------------------------------------------------------------------------------------------------
2021-01-21 04:46:02,392 EPOCH 10 done: loss 0.1625 - lr 0.0000025
2021-01-21 04:46:02,392 BAD EPOCHS (no improvement): 4
2021-01-21 04:46:02,396 ----------------------------------------------------------------------------------------------------
2021-01-21 04:49:48,063 epoch 11 - iter 476/4766 - loss 0.12302402 - samples/sec: 8.44 - lr: 0.000002
2021-01-21 04:53:27,641 epoch 11 - iter 952/4766 - loss 0.14938588 - samples/sec: 8.67 - lr: 0.000002
2021-01-21 04:57:17,073 epoch 11 - iter 1428/4766 - loss 0.15249822 - samples/sec: 8.30 - lr: 0.000002
2021-01-21 05:01:04,811 epoch 11 - iter 1904/4766 - loss 0.15278022 - samples/sec: 8.36 - lr: 0.000002
2021-01-21 05:04:54,048 epoch 11 - iter 2380/4766 - loss 0.14726127 - samples/sec: 8.31 - lr: 0.000002
2021-01-21 05:08:43,193 epoch 11 - iter 2856/4766 - loss 0.14789523 - samples/sec: 8.31 - lr: 0.000002
2021-01-21 05:13:06,493 epoch 11 - iter 3332/4766 - loss 0.14714088 - samples/sec: 7.23 - lr: 0.000002
2021-01-21 05:16:50,965 epoch 11 - iter 3808/4766 - loss 0.14520739 - samples/sec: 8.48 - lr: 0.000002
2021-01-21 05:20:39,478 epoch 11 - iter 4284/4766 - loss 0.14887415 - samples/sec: 8.33 - lr: 0.000002
2021-01-21 05:24:29,111 epoch 11 - iter 4760/4766 - loss 0.14659288 - samples/sec: 8.29 - lr: 0.000002
2021-01-21 05:24:31,802 ----------------------------------------------------------------------------------------------------
2021-01-21 05:24:31,802 EPOCH 11 done: loss 0.1467 - lr 0.0000021
2021-01-21 05:24:31,802 BAD EPOCHS (no improvement): 4
2021-01-21 05:24:31,805 ----------------------------------------------------------------------------------------------------
2021-01-21 05:28:14,475 epoch 12 - iter 476/4766 - loss 0.15315567 - samples/sec: 8.55 - lr: 0.000002
2021-01-21 05:31:59,651 epoch 12 - iter 952/4766 - loss 0.16653427 - samples/sec: 8.46 - lr: 0.000002
2021-01-21 05:35:41,742 epoch 12 - iter 1428/4766 - loss 0.15943798 - samples/sec: 8.57 - lr: 0.000002
2021-01-21 05:39:23,773 epoch 12 - iter 1904/4766 - loss 0.14738183 - samples/sec: 8.58 - lr: 0.000002
2021-01-21 05:43:07,737 epoch 12 - iter 2380/4766 - loss 0.14768732 - samples/sec: 8.50 - lr: 0.000002
2021-01-21 05:46:50,097 epoch 12 - iter 2856/4766 - loss 0.14579714 - samples/sec: 8.56 - lr: 0.000002
2021-01-21 05:50:30,750 epoch 12 - iter 3332/4766 - loss 0.14426661 - samples/sec: 8.63 - lr: 0.000002
2021-01-21 05:54:10,533 epoch 12 - iter 3808/4766 - loss 0.14331669 - samples/sec: 8.66 - lr: 0.000002
2021-01-21 05:57:51,040 epoch 12 - iter 4284/4766 - loss 0.14558392 - samples/sec: 8.64 - lr: 0.000002
2021-01-21 06:01:31,114 epoch 12 - iter 4760/4766 - loss 0.14487869 - samples/sec: 8.65 - lr: 0.000002
2021-01-21 06:01:33,698 ----------------------------------------------------------------------------------------------------
2021-01-21 06:01:33,699 EPOCH 12 done: loss 0.1448 - lr 0.0000017
2021-01-21 06:01:33,699 BAD EPOCHS (no improvement): 4
2021-01-21 06:01:33,728 ----------------------------------------------------------------------------------------------------
2021-01-21 06:05:13,916 epoch 13 - iter 476/4766 - loss 0.14655107 - samples/sec: 8.65 - lr: 0.000002
2021-01-21 06:09:00,692 epoch 13 - iter 952/4766 - loss 0.15434704 - samples/sec: 8.40 - lr: 0.000002
2021-01-21 06:13:01,021 epoch 13 - iter 1428/4766 - loss 0.14097797 - samples/sec: 7.92 - lr: 0.000002
2021-01-21 06:16:53,666 epoch 13 - iter 1904/4766 - loss 0.14277714 - samples/sec: 8.18 - lr: 0.000002
2021-01-21 06:20:42,859 epoch 13 - iter 2380/4766 - loss 0.14354307 - samples/sec: 8.31 - lr: 0.000002
2021-01-21 06:24:31,146 epoch 13 - iter 2856/4766 - loss 0.14679997 - samples/sec: 8.34 - lr: 0.000002
2021-01-21 06:28:19,832 epoch 13 - iter 3332/4766 - loss 0.14780579 - samples/sec: 8.33 - lr: 0.000001
2021-01-21 06:32:08,563 epoch 13 - iter 3808/4766 - loss 0.14877294 - samples/sec: 8.32 - lr: 0.000001
2021-01-21 06:35:55,834 epoch 13 - iter 4284/4766 - loss 0.14803883 - samples/sec: 8.38 - lr: 0.000001
2021-01-21 06:39:44,884 epoch 13 - iter 4760/4766 - loss 0.15072743 - samples/sec: 8.31 - lr: 0.000001
2021-01-21 06:39:47,605 ----------------------------------------------------------------------------------------------------
2021-01-21 06:39:47,605 EPOCH 13 done: loss 0.1512 - lr 0.0000014
2021-01-21 06:39:47,605 BAD EPOCHS (no improvement): 4
2021-01-21 06:39:47,610 ----------------------------------------------------------------------------------------------------
2021-01-21 06:43:34,894 epoch 14 - iter 476/4766 - loss 0.11684375 - samples/sec: 8.38 - lr: 0.000001
2021-01-21 06:47:22,075 epoch 14 - iter 952/4766 - loss 0.13685666 - samples/sec: 8.38 - lr: 0.000001
2021-01-21 06:51:09,835 epoch 14 - iter 1428/4766 - loss 0.15137543 - samples/sec: 8.36 - lr: 0.000001
2021-01-21 06:54:56,328 epoch 14 - iter 1904/4766 - loss 0.15223388 - samples/sec: 8.41 - lr: 0.000001
2021-01-21 06:58:43,179 epoch 14 - iter 2380/4766 - loss 0.15232770 - samples/sec: 8.39 - lr: 0.000001
2021-01-21 07:02:29,960 epoch 14 - iter 2856/4766 - loss 0.15376646 - samples/sec: 8.40 - lr: 0.000001
2021-01-21 07:06:16,979 epoch 14 - iter 3332/4766 - loss 0.14910628 - samples/sec: 8.39 - lr: 0.000001
2021-01-21 07:10:05,313 epoch 14 - iter 3808/4766 - loss 0.15073272 - samples/sec: 8.34 - lr: 0.000001
2021-01-21 07:13:52,950 epoch 14 - iter 4284/4766 - loss 0.14982179 - samples/sec: 8.36 - lr: 0.000001
2021-01-21 07:17:41,726 epoch 14 - iter 4760/4766 - loss 0.14669553 - samples/sec: 8.32 - lr: 0.000001
2021-01-21 07:17:44,436 ----------------------------------------------------------------------------------------------------
2021-01-21 07:17:44,436 EPOCH 14 done: loss 0.1467 - lr 0.0000010
2021-01-21 07:17:44,436 BAD EPOCHS (no improvement): 4
2021-01-21 07:17:44,439 ----------------------------------------------------------------------------------------------------
2021-01-21 07:21:32,208 epoch 15 - iter 476/4766 - loss 0.15710687 - samples/sec: 8.36 - lr: 0.000001
2021-01-21 07:25:20,097 epoch 15 - iter 952/4766 - loss 0.15127131 - samples/sec: 8.36 - lr: 0.000001
2021-01-21 07:29:09,242 epoch 15 - iter 1428/4766 - loss 0.15385280 - samples/sec: 8.31 - lr: 0.000001
2021-01-21 07:32:56,645 epoch 15 - iter 1904/4766 - loss 0.15263483 - samples/sec: 8.37 - lr: 0.000001
2021-01-21 07:36:44,549 epoch 15 - iter 2380/4766 - loss 0.15494254 - samples/sec: 8.35 - lr: 0.000001
2021-01-21 07:40:31,861 epoch 15 - iter 2856/4766 - loss 0.14994557 - samples/sec: 8.38 - lr: 0.000001
2021-01-21 07:44:20,745 epoch 15 - iter 3332/4766 - loss 0.15018726 - samples/sec: 8.32 - lr: 0.000001
2021-01-21 07:48:07,710 epoch 15 - iter 3808/4766 - loss 0.14815315 - samples/sec: 8.39 - lr: 0.000001
2021-01-21 07:51:58,674 epoch 15 - iter 4284/4766 - loss 0.14728940 - samples/sec: 8.24 - lr: 0.000001
2021-01-21 07:55:50,263 epoch 15 - iter 4760/4766 - loss 0.14723711 - samples/sec: 8.22 - lr: 0.000001
2021-01-21 07:55:53,003 ----------------------------------------------------------------------------------------------------
2021-01-21 07:55:53,003 EPOCH 15 done: loss 0.1473 - lr 0.0000007
2021-01-21 07:55:53,003 BAD EPOCHS (no improvement): 4
2021-01-21 07:55:53,008 ----------------------------------------------------------------------------------------------------
2021-01-21 07:59:44,568 epoch 16 - iter 476/4766 - loss 0.13166130 - samples/sec: 8.22 - lr: 0.000001
2021-01-21 08:03:36,181 epoch 16 - iter 952/4766 - loss 0.14175737 - samples/sec: 8.22 - lr: 0.000001
2021-01-21 08:07:28,882 epoch 16 - iter 1428/4766 - loss 0.14304356 - samples/sec: 8.18 - lr: 0.000001
2021-01-21 08:11:20,434 epoch 16 - iter 1904/4766 - loss 0.14622200 - samples/sec: 8.22 - lr: 0.000001
2021-01-21 08:15:12,406 epoch 16 - iter 2380/4766 - loss 0.14768067 - samples/sec: 8.21 - lr: 0.000001
2021-01-21 08:19:04,996 epoch 16 - iter 2856/4766 - loss 0.14707410 - samples/sec: 8.19 - lr: 0.000001
2021-01-21 08:22:56,583 epoch 16 - iter 3332/4766 - loss 0.14688055 - samples/sec: 8.22 - lr: 0.000001
2021-01-21 08:27:15,003 epoch 16 - iter 3808/4766 - loss 0.14730450 - samples/sec: 7.37 - lr: 0.000001
2021-01-21 08:31:07,174 epoch 16 - iter 4284/4766 - loss 0.14827136 - samples/sec: 8.20 - lr: 0.000001
2021-01-21 08:34:59,482 epoch 16 - iter 4760/4766 - loss 0.14568427 - samples/sec: 8.20 - lr: 0.000000
2021-01-21 08:35:02,197 ----------------------------------------------------------------------------------------------------
2021-01-21 08:35:02,198 EPOCH 16 done: loss 0.1456 - lr 0.0000005
2021-01-21 08:35:02,198 BAD EPOCHS (no improvement): 4
2021-01-21 08:35:02,216 ----------------------------------------------------------------------------------------------------
2021-01-21 08:38:52,372 epoch 17 - iter 476/4766 - loss 0.12585091 - samples/sec: 8.27 - lr: 0.000000
2021-01-21 08:42:26,708 epoch 17 - iter 952/4766 - loss 0.13980769 - samples/sec: 8.88 - lr: 0.000000
2021-01-21 08:45:38,094 epoch 17 - iter 1428/4766 - loss 0.13790265 - samples/sec: 9.95 - lr: 0.000000
2021-01-21 08:48:48,648 epoch 17 - iter 1904/4766 - loss 0.13518588 - samples/sec: 9.99 - lr: 0.000000
2021-01-21 08:52:38,876 epoch 17 - iter 2380/4766 - loss 0.14102829 - samples/sec: 8.27 - lr: 0.000000
2021-01-21 08:58:28,052 epoch 17 - iter 2856/4766 - loss 0.13996114 - samples/sec: 5.45 - lr: 0.000000
2021-01-21 09:04:23,763 epoch 17 - iter 3332/4766 - loss 0.13826631 - samples/sec: 5.35 - lr: 0.000000
2021-01-21 09:07:47,606 epoch 17 - iter 3808/4766 - loss 0.13959091 - samples/sec: 9.34 - lr: 0.000000
2021-01-21 09:10:58,844 epoch 17 - iter 4284/4766 - loss 0.13834961 - samples/sec: 9.96 - lr: 0.000000
2021-01-21 09:14:07,816 epoch 17 - iter 4760/4766 - loss 0.14037759 - samples/sec: 10.08 - lr: 0.000000
2021-01-21 09:14:10,160 ----------------------------------------------------------------------------------------------------
2021-01-21 09:14:10,160 EPOCH 17 done: loss 0.1403 - lr 0.0000003
2021-01-21 09:14:10,160 BAD EPOCHS (no improvement): 4
2021-01-21 09:14:10,181 ----------------------------------------------------------------------------------------------------
2021-01-21 09:17:20,231 epoch 18 - iter 476/4766 - loss 0.13481177 - samples/sec: 10.02 - lr: 0.000000
2021-01-21 09:20:31,285 epoch 18 - iter 952/4766 - loss 0.12601264 - samples/sec: 9.97 - lr: 0.000000
2021-01-21 09:23:41,236 epoch 18 - iter 1428/4766 - loss 0.12608326 - samples/sec: 10.02 - lr: 0.000000
2021-01-21 09:26:51,839 epoch 18 - iter 1904/4766 - loss 0.13399083 - samples/sec: 9.99 - lr: 0.000000
2021-01-21 09:30:03,764 epoch 18 - iter 2380/4766 - loss 0.13876490 - samples/sec: 9.92 - lr: 0.000000
2021-01-21 09:33:15,574 epoch 18 - iter 2856/4766 - loss 0.13878700 - samples/sec: 9.93 - lr: 0.000000
2021-01-21 09:36:26,971 epoch 18 - iter 3332/4766 - loss 0.14409246 - samples/sec: 9.95 - lr: 0.000000
2021-01-21 09:39:37,934 epoch 18 - iter 3808/4766 - loss 0.14454244 - samples/sec: 9.97 - lr: 0.000000
2021-01-21 09:42:48,260 epoch 18 - iter 4284/4766 - loss 0.14386075 - samples/sec: 10.00 - lr: 0.000000
2021-01-21 09:45:58,345 epoch 18 - iter 4760/4766 - loss 0.14489400 - samples/sec: 10.02 - lr: 0.000000
2021-01-21 09:46:00,567 ----------------------------------------------------------------------------------------------------
2021-01-21 09:46:00,567 EPOCH 18 done: loss 0.1448 - lr 0.0000001
2021-01-21 09:46:00,567 BAD EPOCHS (no improvement): 4
2021-01-21 09:46:00,570 ----------------------------------------------------------------------------------------------------
2021-01-21 09:49:13,016 epoch 19 - iter 476/4766 - loss 0.16550822 - samples/sec: 9.89 - lr: 0.000000
2021-01-21 09:52:27,091 epoch 19 - iter 952/4766 - loss 0.13214122 - samples/sec: 9.81 - lr: 0.000000
2021-01-21 09:55:42,085 epoch 19 - iter 1428/4766 - loss 0.13831234 - samples/sec: 9.77 - lr: 0.000000
2021-01-21 09:58:56,680 epoch 19 - iter 1904/4766 - loss 0.13832571 - samples/sec: 9.79 - lr: 0.000000
2021-01-21 10:02:12,350 epoch 19 - iter 2380/4766 - loss 0.13808449 - samples/sec: 9.73 - lr: 0.000000
2021-01-21 10:05:26,205 epoch 19 - iter 2856/4766 - loss 0.13753814 - samples/sec: 9.82 - lr: 0.000000
2021-01-21 10:08:40,777 epoch 19 - iter 3332/4766 - loss 0.13826467 - samples/sec: 9.79 - lr: 0.000000
2021-01-21 10:11:55,648 epoch 19 - iter 3808/4766 - loss 0.14029889 - samples/sec: 9.77 - lr: 0.000000
2021-01-21 10:15:10,349 epoch 19 - iter 4284/4766 - loss 0.13696667 - samples/sec: 9.78 - lr: 0.000000
2021-01-21 10:18:24,777 epoch 19 - iter 4760/4766 - loss 0.13874853 - samples/sec: 9.79 - lr: 0.000000
2021-01-21 10:18:27,049 ----------------------------------------------------------------------------------------------------
2021-01-21 10:18:27,049 EPOCH 19 done: loss 0.1386 - lr 0.0000000
2021-01-21 10:18:27,049 BAD EPOCHS (no improvement): 4
2021-01-21 10:18:27,582 ----------------------------------------------------------------------------------------------------
2021-01-21 10:21:42,494 epoch 20 - iter 476/4766 - loss 0.11851291 - samples/sec: 9.77 - lr: 0.000000
2021-01-21 10:24:56,145 epoch 20 - iter 952/4766 - loss 0.13441288 - samples/sec: 9.83 - lr: 0.000000
2021-01-21 10:28:10,170 epoch 20 - iter 1428/4766 - loss 0.14083137 - samples/sec: 9.81 - lr: 0.000000
2021-01-21 10:31:25,784 epoch 20 - iter 1904/4766 - loss 0.14039091 - samples/sec: 9.73 - lr: 0.000000
2021-01-21 10:34:40,300 epoch 20 - iter 2380/4766 - loss 0.14164687 - samples/sec: 9.79 - lr: 0.000000
2021-01-21 10:37:54,324 epoch 20 - iter 2856/4766 - loss 0.13843665 - samples/sec: 9.81 - lr: 0.000000
2021-01-21 10:41:05,695 epoch 20 - iter 3332/4766 - loss 0.13902040 - samples/sec: 9.95 - lr: 0.000000
2021-01-21 10:44:16,299 epoch 20 - iter 3808/4766 - loss 0.13728566 - samples/sec: 9.99 - lr: 0.000000
2021-01-21 10:47:26,320 epoch 20 - iter 4284/4766 - loss 0.13661214 - samples/sec: 10.02 - lr: 0.000000
2021-01-21 10:50:35,967 epoch 20 - iter 4760/4766 - loss 0.13488013 - samples/sec: 10.04 - lr: 0.000000
2021-01-21 10:50:38,248 ----------------------------------------------------------------------------------------------------
2021-01-21 10:50:38,248 EPOCH 20 done: loss 0.1348 - lr 0.0000000
2021-01-21 10:50:38,248 BAD EPOCHS (no improvement): 4
2021-01-21 10:51:28,424 ----------------------------------------------------------------------------------------------------
2021-01-21 10:51:28,425 Testing using best model ...
2021-01-21 10:54:06,963 0.9530 0.9520 0.9525
2021-01-21 10:54:06,963
Results:
- F1-score (micro) 0.9525
- F1-score (macro) 0.9528
By class:
LOC tp: 751 - fp: 36 - fn: 23 - precision: 0.9543 - recall: 0.9703 - f1-score: 0.9622
MISC tp: 1095 - fp: 56 - fn: 92 - precision: 0.9513 - recall: 0.9225 - f1-score: 0.9367
ORG tp: 834 - fp: 59 - fn: 48 - precision: 0.9339 - recall: 0.9456 - f1-score: 0.9397
PER tp: 1072 - fp: 34 - fn: 26 - precision: 0.9693 - recall: 0.9763 - f1-score: 0.9728
2021-01-21 10:54:06,963 ----------------------------------------------------------------------------------------------------
|