File size: 58,473 Bytes
db56834
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
2021-01-20 22:30:34,817 ----------------------------------------------------------------------------------------------------
2021-01-20 22:30:34,820 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): XLMRobertaModel(
      (embeddings): RobertaEmbeddings(
        (word_embeddings): Embedding(250002, 1024, padding_idx=1)
        (position_embeddings): Embedding(514, 1024, padding_idx=1)
        (token_type_embeddings): Embedding(1, 1024)
        (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): RobertaEncoder(
        (layer): ModuleList(
          (0): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (1): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (2): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (3): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (4): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (5): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (6): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (7): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (8): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (9): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (10): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (11): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (12): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (13): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (14): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (15): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (16): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (17): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (18): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (19): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (20): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (21): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (22): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (23): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): RobertaPooler(
        (dense): Linear(in_features=1024, out_features=1024, bias=True)
        (activation): Tanh()
      )
    )
  )
  (word_dropout): WordDropout(p=0.05)
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=1024, out_features=20, bias=True)
  (beta): 1.0
  (weights): None
  (weight_tensor) None
)"
2021-01-20 22:30:34,821 ----------------------------------------------------------------------------------------------------
2021-01-20 22:30:34,821 Corpus: "Corpus: 16093 train + 2969 dev + 5314 test sentences"
2021-01-20 22:30:34,821 ----------------------------------------------------------------------------------------------------
2021-01-20 22:30:34,821 Parameters:
2021-01-20 22:30:34,821  - learning_rate: "5e-06"
2021-01-20 22:30:34,821  - mini_batch_size: "4"
2021-01-20 22:30:34,821  - patience: "3"
2021-01-20 22:30:34,821  - anneal_factor: "0.5"
2021-01-20 22:30:34,822  - max_epochs: "20"
2021-01-20 22:30:34,822  - shuffle: "True"
2021-01-20 22:30:34,822  - train_with_dev: "True"
2021-01-20 22:30:34,822  - batch_growth_annealing: "False"
2021-01-20 22:30:34,822 ----------------------------------------------------------------------------------------------------
2021-01-20 22:30:34,822 Model training base path: "resources/contextdrop/flert-nl-ft+dev-xlm-roberta-large-context+drop-64-True-127"
2021-01-20 22:30:34,822 ----------------------------------------------------------------------------------------------------
2021-01-20 22:30:34,822 Device: cuda:0
2021-01-20 22:30:34,822 ----------------------------------------------------------------------------------------------------
2021-01-20 22:30:34,822 Embeddings storage mode: none
2021-01-20 22:30:34,833 ----------------------------------------------------------------------------------------------------
2021-01-20 22:34:24,138 epoch 1 - iter 476/4766 - loss 0.75007446 - samples/sec: 8.30 - lr: 0.000005
2021-01-20 22:38:11,813 epoch 1 - iter 952/4766 - loss 0.55138470 - samples/sec: 8.36 - lr: 0.000005
2021-01-20 22:42:03,548 epoch 1 - iter 1428/4766 - loss 0.46882800 - samples/sec: 8.22 - lr: 0.000005
2021-01-20 22:45:56,496 epoch 1 - iter 1904/4766 - loss 0.42568348 - samples/sec: 8.17 - lr: 0.000005
2021-01-20 22:49:48,705 epoch 1 - iter 2380/4766 - loss 0.40460601 - samples/sec: 8.20 - lr: 0.000005
2021-01-20 22:53:40,511 epoch 1 - iter 2856/4766 - loss 0.38479376 - samples/sec: 8.21 - lr: 0.000005
2021-01-20 22:57:31,693 epoch 1 - iter 3332/4766 - loss 0.36783532 - samples/sec: 8.24 - lr: 0.000005
2021-01-20 23:01:24,894 epoch 1 - iter 3808/4766 - loss 0.35297261 - samples/sec: 8.17 - lr: 0.000005
2021-01-20 23:05:16,842 epoch 1 - iter 4284/4766 - loss 0.33562353 - samples/sec: 8.21 - lr: 0.000005
2021-01-20 23:09:08,356 epoch 1 - iter 4760/4766 - loss 0.32624764 - samples/sec: 8.22 - lr: 0.000005
2021-01-20 23:09:11,043 ----------------------------------------------------------------------------------------------------
2021-01-20 23:09:11,044 EPOCH 1 done: loss 0.3260 - lr 0.0000050
2021-01-20 23:09:11,044 BAD EPOCHS (no improvement): 4
2021-01-20 23:09:11,056 ----------------------------------------------------------------------------------------------------
2021-01-20 23:13:02,174 epoch 2 - iter 476/4766 - loss 0.19592687 - samples/sec: 8.24 - lr: 0.000005
2021-01-20 23:16:52,896 epoch 2 - iter 952/4766 - loss 0.19343522 - samples/sec: 8.25 - lr: 0.000005
2021-01-20 23:20:44,314 epoch 2 - iter 1428/4766 - loss 0.19096819 - samples/sec: 8.23 - lr: 0.000005
2021-01-20 23:24:34,798 epoch 2 - iter 1904/4766 - loss 0.20419720 - samples/sec: 8.26 - lr: 0.000005
2021-01-20 23:28:25,592 epoch 2 - iter 2380/4766 - loss 0.20562715 - samples/sec: 8.25 - lr: 0.000005
2021-01-20 23:32:18,034 epoch 2 - iter 2856/4766 - loss 0.21479885 - samples/sec: 8.19 - lr: 0.000005
2021-01-20 23:36:11,088 epoch 2 - iter 3332/4766 - loss 0.22119955 - samples/sec: 8.17 - lr: 0.000005
2021-01-20 23:39:57,520 epoch 2 - iter 3808/4766 - loss 0.22084426 - samples/sec: 8.41 - lr: 0.000005
2021-01-20 23:43:40,262 epoch 2 - iter 4284/4766 - loss 0.22666022 - samples/sec: 8.55 - lr: 0.000005
2021-01-20 23:47:22,340 epoch 2 - iter 4760/4766 - loss 0.22898245 - samples/sec: 8.57 - lr: 0.000005
2021-01-20 23:47:24,928 ----------------------------------------------------------------------------------------------------
2021-01-20 23:47:24,928 EPOCH 2 done: loss 0.2291 - lr 0.0000049
2021-01-20 23:47:24,928 BAD EPOCHS (no improvement): 4
2021-01-20 23:47:24,932 ----------------------------------------------------------------------------------------------------
2021-01-20 23:51:06,331 epoch 3 - iter 476/4766 - loss 0.17300695 - samples/sec: 8.60 - lr: 0.000005
2021-01-20 23:54:48,800 epoch 3 - iter 952/4766 - loss 0.18720678 - samples/sec: 8.56 - lr: 0.000005
2021-01-20 23:58:33,629 epoch 3 - iter 1428/4766 - loss 0.18315013 - samples/sec: 8.47 - lr: 0.000005
2021-01-21 00:02:15,888 epoch 3 - iter 1904/4766 - loss 0.18674032 - samples/sec: 8.57 - lr: 0.000005
2021-01-21 00:05:57,520 epoch 3 - iter 2380/4766 - loss 0.19216686 - samples/sec: 8.59 - lr: 0.000005
2021-01-21 00:09:39,305 epoch 3 - iter 2856/4766 - loss 0.19094677 - samples/sec: 8.59 - lr: 0.000005
2021-01-21 00:13:20,604 epoch 3 - iter 3332/4766 - loss 0.18956430 - samples/sec: 8.60 - lr: 0.000005
2021-01-21 00:17:01,961 epoch 3 - iter 3808/4766 - loss 0.18552889 - samples/sec: 8.60 - lr: 0.000005
2021-01-21 00:20:43,755 epoch 3 - iter 4284/4766 - loss 0.18237621 - samples/sec: 8.59 - lr: 0.000005
2021-01-21 00:24:26,424 epoch 3 - iter 4760/4766 - loss 0.18548491 - samples/sec: 8.55 - lr: 0.000005
2021-01-21 00:24:29,094 ----------------------------------------------------------------------------------------------------
2021-01-21 00:24:29,094 EPOCH 3 done: loss 0.1856 - lr 0.0000047
2021-01-21 00:24:29,094 BAD EPOCHS (no improvement): 4
2021-01-21 00:24:29,113 ----------------------------------------------------------------------------------------------------
2021-01-21 00:28:10,733 epoch 4 - iter 476/4766 - loss 0.16395309 - samples/sec: 8.59 - lr: 0.000005
2021-01-21 00:31:51,536 epoch 4 - iter 952/4766 - loss 0.15725064 - samples/sec: 8.62 - lr: 0.000005
2021-01-21 00:35:32,411 epoch 4 - iter 1428/4766 - loss 0.15046027 - samples/sec: 8.62 - lr: 0.000005
2021-01-21 00:39:11,999 epoch 4 - iter 1904/4766 - loss 0.15211000 - samples/sec: 8.67 - lr: 0.000005
2021-01-21 00:42:52,983 epoch 4 - iter 2380/4766 - loss 0.15810432 - samples/sec: 8.62 - lr: 0.000005
2021-01-21 00:46:35,874 epoch 4 - iter 2856/4766 - loss 0.15986602 - samples/sec: 8.54 - lr: 0.000005
2021-01-21 00:50:17,362 epoch 4 - iter 3332/4766 - loss 0.15994249 - samples/sec: 8.60 - lr: 0.000005
2021-01-21 00:53:58,810 epoch 4 - iter 3808/4766 - loss 0.15891707 - samples/sec: 8.60 - lr: 0.000005
2021-01-21 00:57:39,682 epoch 4 - iter 4284/4766 - loss 0.16493451 - samples/sec: 8.62 - lr: 0.000005
2021-01-21 01:01:20,887 epoch 4 - iter 4760/4766 - loss 0.16578159 - samples/sec: 8.61 - lr: 0.000005
2021-01-21 01:01:23,546 ----------------------------------------------------------------------------------------------------
2021-01-21 01:01:23,546 EPOCH 4 done: loss 0.1656 - lr 0.0000045
2021-01-21 01:01:23,546 BAD EPOCHS (no improvement): 4
2021-01-21 01:01:23,549 ----------------------------------------------------------------------------------------------------
2021-01-21 01:05:05,137 epoch 5 - iter 476/4766 - loss 0.16713775 - samples/sec: 8.59 - lr: 0.000004
2021-01-21 01:08:46,452 epoch 5 - iter 952/4766 - loss 0.15990526 - samples/sec: 8.60 - lr: 0.000004
2021-01-21 01:12:28,191 epoch 5 - iter 1428/4766 - loss 0.16156578 - samples/sec: 8.59 - lr: 0.000004
2021-01-21 01:16:08,457 epoch 5 - iter 1904/4766 - loss 0.16763724 - samples/sec: 8.64 - lr: 0.000004
2021-01-21 01:19:50,350 epoch 5 - iter 2380/4766 - loss 0.16378794 - samples/sec: 8.58 - lr: 0.000004
2021-01-21 01:23:30,578 epoch 5 - iter 2856/4766 - loss 0.16849384 - samples/sec: 8.65 - lr: 0.000004
2021-01-21 01:27:10,395 epoch 5 - iter 3332/4766 - loss 0.16382910 - samples/sec: 8.66 - lr: 0.000004
2021-01-21 01:30:51,552 epoch 5 - iter 3808/4766 - loss 0.16654785 - samples/sec: 8.61 - lr: 0.000004
2021-01-21 01:34:33,151 epoch 5 - iter 4284/4766 - loss 0.16617839 - samples/sec: 8.59 - lr: 0.000004
2021-01-21 01:38:13,465 epoch 5 - iter 4760/4766 - loss 0.16489933 - samples/sec: 8.64 - lr: 0.000004
2021-01-21 01:38:16,065 ----------------------------------------------------------------------------------------------------
2021-01-21 01:38:16,065 EPOCH 5 done: loss 0.1648 - lr 0.0000043
2021-01-21 01:38:16,066 BAD EPOCHS (no improvement): 4
2021-01-21 01:38:16,069 ----------------------------------------------------------------------------------------------------
2021-01-21 01:41:56,751 epoch 6 - iter 476/4766 - loss 0.15331536 - samples/sec: 8.63 - lr: 0.000004
2021-01-21 01:45:37,683 epoch 6 - iter 952/4766 - loss 0.16628115 - samples/sec: 8.62 - lr: 0.000004
2021-01-21 01:49:18,657 epoch 6 - iter 1428/4766 - loss 0.16559479 - samples/sec: 8.62 - lr: 0.000004
2021-01-21 01:52:59,337 epoch 6 - iter 1904/4766 - loss 0.16505749 - samples/sec: 8.63 - lr: 0.000004
2021-01-21 01:56:41,398 epoch 6 - iter 2380/4766 - loss 0.16408360 - samples/sec: 8.57 - lr: 0.000004
2021-01-21 02:00:22,782 epoch 6 - iter 2856/4766 - loss 0.16367926 - samples/sec: 8.60 - lr: 0.000004
2021-01-21 02:04:04,491 epoch 6 - iter 3332/4766 - loss 0.16323212 - samples/sec: 8.59 - lr: 0.000004
2021-01-21 02:07:46,417 epoch 6 - iter 3808/4766 - loss 0.16476110 - samples/sec: 8.58 - lr: 0.000004
2021-01-21 02:11:27,402 epoch 6 - iter 4284/4766 - loss 0.16556307 - samples/sec: 8.62 - lr: 0.000004
2021-01-21 02:15:08,877 epoch 6 - iter 4760/4766 - loss 0.16431570 - samples/sec: 8.60 - lr: 0.000004
2021-01-21 02:15:11,479 ----------------------------------------------------------------------------------------------------
2021-01-21 02:15:11,480 EPOCH 6 done: loss 0.1648 - lr 0.0000040
2021-01-21 02:15:11,480 BAD EPOCHS (no improvement): 4
2021-01-21 02:15:11,483 ----------------------------------------------------------------------------------------------------
2021-01-21 02:18:51,563 epoch 7 - iter 476/4766 - loss 0.16677021 - samples/sec: 8.65 - lr: 0.000004
2021-01-21 02:22:33,148 epoch 7 - iter 952/4766 - loss 0.15199812 - samples/sec: 8.59 - lr: 0.000004
2021-01-21 02:26:14,043 epoch 7 - iter 1428/4766 - loss 0.15998079 - samples/sec: 8.62 - lr: 0.000004
2021-01-21 02:29:54,619 epoch 7 - iter 1904/4766 - loss 0.16023978 - samples/sec: 8.63 - lr: 0.000004
2021-01-21 02:33:35,634 epoch 7 - iter 2380/4766 - loss 0.15702676 - samples/sec: 8.62 - lr: 0.000004
2021-01-21 02:37:16,548 epoch 7 - iter 2856/4766 - loss 0.15350997 - samples/sec: 8.62 - lr: 0.000004
2021-01-21 02:40:57,346 epoch 7 - iter 3332/4766 - loss 0.15488921 - samples/sec: 8.62 - lr: 0.000004
2021-01-21 02:44:38,614 epoch 7 - iter 3808/4766 - loss 0.15987947 - samples/sec: 8.61 - lr: 0.000004
2021-01-21 02:48:20,175 epoch 7 - iter 4284/4766 - loss 0.16276295 - samples/sec: 8.59 - lr: 0.000004
2021-01-21 02:52:01,908 epoch 7 - iter 4760/4766 - loss 0.16197284 - samples/sec: 8.59 - lr: 0.000004
2021-01-21 02:52:04,547 ----------------------------------------------------------------------------------------------------
2021-01-21 02:52:04,547 EPOCH 7 done: loss 0.1620 - lr 0.0000036
2021-01-21 02:52:04,547 BAD EPOCHS (no improvement): 4
2021-01-21 02:52:04,550 ----------------------------------------------------------------------------------------------------
2021-01-21 02:55:44,290 epoch 8 - iter 476/4766 - loss 0.12739570 - samples/sec: 8.67 - lr: 0.000004
2021-01-21 02:59:24,874 epoch 8 - iter 952/4766 - loss 0.13459088 - samples/sec: 8.63 - lr: 0.000004
2021-01-21 03:03:05,915 epoch 8 - iter 1428/4766 - loss 0.13249889 - samples/sec: 8.61 - lr: 0.000004
2021-01-21 03:07:51,438 epoch 8 - iter 1904/4766 - loss 0.13557002 - samples/sec: 6.67 - lr: 0.000003
2021-01-21 03:11:32,960 epoch 8 - iter 2380/4766 - loss 0.13750847 - samples/sec: 8.60 - lr: 0.000003
2021-01-21 03:15:15,240 epoch 8 - iter 2856/4766 - loss 0.13920395 - samples/sec: 8.57 - lr: 0.000003
2021-01-21 03:18:56,540 epoch 8 - iter 3332/4766 - loss 0.14196834 - samples/sec: 8.60 - lr: 0.000003
2021-01-21 03:22:38,133 epoch 8 - iter 3808/4766 - loss 0.14013979 - samples/sec: 8.59 - lr: 0.000003
2021-01-21 03:26:20,491 epoch 8 - iter 4284/4766 - loss 0.14057112 - samples/sec: 8.56 - lr: 0.000003
2021-01-21 03:30:01,506 epoch 8 - iter 4760/4766 - loss 0.13849626 - samples/sec: 8.62 - lr: 0.000003
2021-01-21 03:30:04,136 ----------------------------------------------------------------------------------------------------
2021-01-21 03:30:04,136 EPOCH 8 done: loss 0.1390 - lr 0.0000033
2021-01-21 03:30:04,136 BAD EPOCHS (no improvement): 4
2021-01-21 03:30:04,139 ----------------------------------------------------------------------------------------------------
2021-01-21 03:33:43,789 epoch 9 - iter 476/4766 - loss 0.10898947 - samples/sec: 8.67 - lr: 0.000003
2021-01-21 03:37:24,937 epoch 9 - iter 952/4766 - loss 0.13779523 - samples/sec: 8.61 - lr: 0.000003
2021-01-21 03:41:06,312 epoch 9 - iter 1428/4766 - loss 0.13999643 - samples/sec: 8.60 - lr: 0.000003
2021-01-21 03:44:48,413 epoch 9 - iter 1904/4766 - loss 0.14934964 - samples/sec: 8.57 - lr: 0.000003
2021-01-21 03:48:28,888 epoch 9 - iter 2380/4766 - loss 0.14817911 - samples/sec: 8.64 - lr: 0.000003
2021-01-21 03:52:09,651 epoch 9 - iter 2856/4766 - loss 0.14990197 - samples/sec: 8.63 - lr: 0.000003
2021-01-21 03:55:50,402 epoch 9 - iter 3332/4766 - loss 0.15379190 - samples/sec: 8.63 - lr: 0.000003
2021-01-21 03:59:32,243 epoch 9 - iter 3808/4766 - loss 0.15360767 - samples/sec: 8.58 - lr: 0.000003
2021-01-21 04:03:12,525 epoch 9 - iter 4284/4766 - loss 0.15584102 - samples/sec: 8.64 - lr: 0.000003
2021-01-21 04:06:52,524 epoch 9 - iter 4760/4766 - loss 0.15575696 - samples/sec: 8.66 - lr: 0.000003
2021-01-21 04:06:55,162 ----------------------------------------------------------------------------------------------------
2021-01-21 04:06:55,162 EPOCH 9 done: loss 0.1559 - lr 0.0000029
2021-01-21 04:06:55,162 BAD EPOCHS (no improvement): 4
2021-01-21 04:06:55,174 ----------------------------------------------------------------------------------------------------
2021-01-21 04:10:34,900 epoch 10 - iter 476/4766 - loss 0.16271080 - samples/sec: 8.67 - lr: 0.000003
2021-01-21 04:14:20,175 epoch 10 - iter 952/4766 - loss 0.16397437 - samples/sec: 8.45 - lr: 0.000003
2021-01-21 04:18:06,987 epoch 10 - iter 1428/4766 - loss 0.15725672 - samples/sec: 8.40 - lr: 0.000003
2021-01-21 04:21:49,215 epoch 10 - iter 1904/4766 - loss 0.15423771 - samples/sec: 8.57 - lr: 0.000003
2021-01-21 04:25:28,895 epoch 10 - iter 2380/4766 - loss 0.15973856 - samples/sec: 8.67 - lr: 0.000003
2021-01-21 04:29:23,464 epoch 10 - iter 2856/4766 - loss 0.16022188 - samples/sec: 8.12 - lr: 0.000003
2021-01-21 04:33:45,631 epoch 10 - iter 3332/4766 - loss 0.16116028 - samples/sec: 7.26 - lr: 0.000003
2021-01-21 04:37:33,764 epoch 10 - iter 3808/4766 - loss 0.16539610 - samples/sec: 8.35 - lr: 0.000003
2021-01-21 04:42:13,315 epoch 10 - iter 4284/4766 - loss 0.16546677 - samples/sec: 6.81 - lr: 0.000003
2021-01-21 04:45:59,709 epoch 10 - iter 4760/4766 - loss 0.16271866 - samples/sec: 8.41 - lr: 0.000003
2021-01-21 04:46:02,392 ----------------------------------------------------------------------------------------------------
2021-01-21 04:46:02,392 EPOCH 10 done: loss 0.1625 - lr 0.0000025
2021-01-21 04:46:02,392 BAD EPOCHS (no improvement): 4
2021-01-21 04:46:02,396 ----------------------------------------------------------------------------------------------------
2021-01-21 04:49:48,063 epoch 11 - iter 476/4766 - loss 0.12302402 - samples/sec: 8.44 - lr: 0.000002
2021-01-21 04:53:27,641 epoch 11 - iter 952/4766 - loss 0.14938588 - samples/sec: 8.67 - lr: 0.000002
2021-01-21 04:57:17,073 epoch 11 - iter 1428/4766 - loss 0.15249822 - samples/sec: 8.30 - lr: 0.000002
2021-01-21 05:01:04,811 epoch 11 - iter 1904/4766 - loss 0.15278022 - samples/sec: 8.36 - lr: 0.000002
2021-01-21 05:04:54,048 epoch 11 - iter 2380/4766 - loss 0.14726127 - samples/sec: 8.31 - lr: 0.000002
2021-01-21 05:08:43,193 epoch 11 - iter 2856/4766 - loss 0.14789523 - samples/sec: 8.31 - lr: 0.000002
2021-01-21 05:13:06,493 epoch 11 - iter 3332/4766 - loss 0.14714088 - samples/sec: 7.23 - lr: 0.000002
2021-01-21 05:16:50,965 epoch 11 - iter 3808/4766 - loss 0.14520739 - samples/sec: 8.48 - lr: 0.000002
2021-01-21 05:20:39,478 epoch 11 - iter 4284/4766 - loss 0.14887415 - samples/sec: 8.33 - lr: 0.000002
2021-01-21 05:24:29,111 epoch 11 - iter 4760/4766 - loss 0.14659288 - samples/sec: 8.29 - lr: 0.000002
2021-01-21 05:24:31,802 ----------------------------------------------------------------------------------------------------
2021-01-21 05:24:31,802 EPOCH 11 done: loss 0.1467 - lr 0.0000021
2021-01-21 05:24:31,802 BAD EPOCHS (no improvement): 4
2021-01-21 05:24:31,805 ----------------------------------------------------------------------------------------------------
2021-01-21 05:28:14,475 epoch 12 - iter 476/4766 - loss 0.15315567 - samples/sec: 8.55 - lr: 0.000002
2021-01-21 05:31:59,651 epoch 12 - iter 952/4766 - loss 0.16653427 - samples/sec: 8.46 - lr: 0.000002
2021-01-21 05:35:41,742 epoch 12 - iter 1428/4766 - loss 0.15943798 - samples/sec: 8.57 - lr: 0.000002
2021-01-21 05:39:23,773 epoch 12 - iter 1904/4766 - loss 0.14738183 - samples/sec: 8.58 - lr: 0.000002
2021-01-21 05:43:07,737 epoch 12 - iter 2380/4766 - loss 0.14768732 - samples/sec: 8.50 - lr: 0.000002
2021-01-21 05:46:50,097 epoch 12 - iter 2856/4766 - loss 0.14579714 - samples/sec: 8.56 - lr: 0.000002
2021-01-21 05:50:30,750 epoch 12 - iter 3332/4766 - loss 0.14426661 - samples/sec: 8.63 - lr: 0.000002
2021-01-21 05:54:10,533 epoch 12 - iter 3808/4766 - loss 0.14331669 - samples/sec: 8.66 - lr: 0.000002
2021-01-21 05:57:51,040 epoch 12 - iter 4284/4766 - loss 0.14558392 - samples/sec: 8.64 - lr: 0.000002
2021-01-21 06:01:31,114 epoch 12 - iter 4760/4766 - loss 0.14487869 - samples/sec: 8.65 - lr: 0.000002
2021-01-21 06:01:33,698 ----------------------------------------------------------------------------------------------------
2021-01-21 06:01:33,699 EPOCH 12 done: loss 0.1448 - lr 0.0000017
2021-01-21 06:01:33,699 BAD EPOCHS (no improvement): 4
2021-01-21 06:01:33,728 ----------------------------------------------------------------------------------------------------
2021-01-21 06:05:13,916 epoch 13 - iter 476/4766 - loss 0.14655107 - samples/sec: 8.65 - lr: 0.000002
2021-01-21 06:09:00,692 epoch 13 - iter 952/4766 - loss 0.15434704 - samples/sec: 8.40 - lr: 0.000002
2021-01-21 06:13:01,021 epoch 13 - iter 1428/4766 - loss 0.14097797 - samples/sec: 7.92 - lr: 0.000002
2021-01-21 06:16:53,666 epoch 13 - iter 1904/4766 - loss 0.14277714 - samples/sec: 8.18 - lr: 0.000002
2021-01-21 06:20:42,859 epoch 13 - iter 2380/4766 - loss 0.14354307 - samples/sec: 8.31 - lr: 0.000002
2021-01-21 06:24:31,146 epoch 13 - iter 2856/4766 - loss 0.14679997 - samples/sec: 8.34 - lr: 0.000002
2021-01-21 06:28:19,832 epoch 13 - iter 3332/4766 - loss 0.14780579 - samples/sec: 8.33 - lr: 0.000001
2021-01-21 06:32:08,563 epoch 13 - iter 3808/4766 - loss 0.14877294 - samples/sec: 8.32 - lr: 0.000001
2021-01-21 06:35:55,834 epoch 13 - iter 4284/4766 - loss 0.14803883 - samples/sec: 8.38 - lr: 0.000001
2021-01-21 06:39:44,884 epoch 13 - iter 4760/4766 - loss 0.15072743 - samples/sec: 8.31 - lr: 0.000001
2021-01-21 06:39:47,605 ----------------------------------------------------------------------------------------------------
2021-01-21 06:39:47,605 EPOCH 13 done: loss 0.1512 - lr 0.0000014
2021-01-21 06:39:47,605 BAD EPOCHS (no improvement): 4
2021-01-21 06:39:47,610 ----------------------------------------------------------------------------------------------------
2021-01-21 06:43:34,894 epoch 14 - iter 476/4766 - loss 0.11684375 - samples/sec: 8.38 - lr: 0.000001
2021-01-21 06:47:22,075 epoch 14 - iter 952/4766 - loss 0.13685666 - samples/sec: 8.38 - lr: 0.000001
2021-01-21 06:51:09,835 epoch 14 - iter 1428/4766 - loss 0.15137543 - samples/sec: 8.36 - lr: 0.000001
2021-01-21 06:54:56,328 epoch 14 - iter 1904/4766 - loss 0.15223388 - samples/sec: 8.41 - lr: 0.000001
2021-01-21 06:58:43,179 epoch 14 - iter 2380/4766 - loss 0.15232770 - samples/sec: 8.39 - lr: 0.000001
2021-01-21 07:02:29,960 epoch 14 - iter 2856/4766 - loss 0.15376646 - samples/sec: 8.40 - lr: 0.000001
2021-01-21 07:06:16,979 epoch 14 - iter 3332/4766 - loss 0.14910628 - samples/sec: 8.39 - lr: 0.000001
2021-01-21 07:10:05,313 epoch 14 - iter 3808/4766 - loss 0.15073272 - samples/sec: 8.34 - lr: 0.000001
2021-01-21 07:13:52,950 epoch 14 - iter 4284/4766 - loss 0.14982179 - samples/sec: 8.36 - lr: 0.000001
2021-01-21 07:17:41,726 epoch 14 - iter 4760/4766 - loss 0.14669553 - samples/sec: 8.32 - lr: 0.000001
2021-01-21 07:17:44,436 ----------------------------------------------------------------------------------------------------
2021-01-21 07:17:44,436 EPOCH 14 done: loss 0.1467 - lr 0.0000010
2021-01-21 07:17:44,436 BAD EPOCHS (no improvement): 4
2021-01-21 07:17:44,439 ----------------------------------------------------------------------------------------------------
2021-01-21 07:21:32,208 epoch 15 - iter 476/4766 - loss 0.15710687 - samples/sec: 8.36 - lr: 0.000001
2021-01-21 07:25:20,097 epoch 15 - iter 952/4766 - loss 0.15127131 - samples/sec: 8.36 - lr: 0.000001
2021-01-21 07:29:09,242 epoch 15 - iter 1428/4766 - loss 0.15385280 - samples/sec: 8.31 - lr: 0.000001
2021-01-21 07:32:56,645 epoch 15 - iter 1904/4766 - loss 0.15263483 - samples/sec: 8.37 - lr: 0.000001
2021-01-21 07:36:44,549 epoch 15 - iter 2380/4766 - loss 0.15494254 - samples/sec: 8.35 - lr: 0.000001
2021-01-21 07:40:31,861 epoch 15 - iter 2856/4766 - loss 0.14994557 - samples/sec: 8.38 - lr: 0.000001
2021-01-21 07:44:20,745 epoch 15 - iter 3332/4766 - loss 0.15018726 - samples/sec: 8.32 - lr: 0.000001
2021-01-21 07:48:07,710 epoch 15 - iter 3808/4766 - loss 0.14815315 - samples/sec: 8.39 - lr: 0.000001
2021-01-21 07:51:58,674 epoch 15 - iter 4284/4766 - loss 0.14728940 - samples/sec: 8.24 - lr: 0.000001
2021-01-21 07:55:50,263 epoch 15 - iter 4760/4766 - loss 0.14723711 - samples/sec: 8.22 - lr: 0.000001
2021-01-21 07:55:53,003 ----------------------------------------------------------------------------------------------------
2021-01-21 07:55:53,003 EPOCH 15 done: loss 0.1473 - lr 0.0000007
2021-01-21 07:55:53,003 BAD EPOCHS (no improvement): 4
2021-01-21 07:55:53,008 ----------------------------------------------------------------------------------------------------
2021-01-21 07:59:44,568 epoch 16 - iter 476/4766 - loss 0.13166130 - samples/sec: 8.22 - lr: 0.000001
2021-01-21 08:03:36,181 epoch 16 - iter 952/4766 - loss 0.14175737 - samples/sec: 8.22 - lr: 0.000001
2021-01-21 08:07:28,882 epoch 16 - iter 1428/4766 - loss 0.14304356 - samples/sec: 8.18 - lr: 0.000001
2021-01-21 08:11:20,434 epoch 16 - iter 1904/4766 - loss 0.14622200 - samples/sec: 8.22 - lr: 0.000001
2021-01-21 08:15:12,406 epoch 16 - iter 2380/4766 - loss 0.14768067 - samples/sec: 8.21 - lr: 0.000001
2021-01-21 08:19:04,996 epoch 16 - iter 2856/4766 - loss 0.14707410 - samples/sec: 8.19 - lr: 0.000001
2021-01-21 08:22:56,583 epoch 16 - iter 3332/4766 - loss 0.14688055 - samples/sec: 8.22 - lr: 0.000001
2021-01-21 08:27:15,003 epoch 16 - iter 3808/4766 - loss 0.14730450 - samples/sec: 7.37 - lr: 0.000001
2021-01-21 08:31:07,174 epoch 16 - iter 4284/4766 - loss 0.14827136 - samples/sec: 8.20 - lr: 0.000001
2021-01-21 08:34:59,482 epoch 16 - iter 4760/4766 - loss 0.14568427 - samples/sec: 8.20 - lr: 0.000000
2021-01-21 08:35:02,197 ----------------------------------------------------------------------------------------------------
2021-01-21 08:35:02,198 EPOCH 16 done: loss 0.1456 - lr 0.0000005
2021-01-21 08:35:02,198 BAD EPOCHS (no improvement): 4
2021-01-21 08:35:02,216 ----------------------------------------------------------------------------------------------------
2021-01-21 08:38:52,372 epoch 17 - iter 476/4766 - loss 0.12585091 - samples/sec: 8.27 - lr: 0.000000
2021-01-21 08:42:26,708 epoch 17 - iter 952/4766 - loss 0.13980769 - samples/sec: 8.88 - lr: 0.000000
2021-01-21 08:45:38,094 epoch 17 - iter 1428/4766 - loss 0.13790265 - samples/sec: 9.95 - lr: 0.000000
2021-01-21 08:48:48,648 epoch 17 - iter 1904/4766 - loss 0.13518588 - samples/sec: 9.99 - lr: 0.000000
2021-01-21 08:52:38,876 epoch 17 - iter 2380/4766 - loss 0.14102829 - samples/sec: 8.27 - lr: 0.000000
2021-01-21 08:58:28,052 epoch 17 - iter 2856/4766 - loss 0.13996114 - samples/sec: 5.45 - lr: 0.000000
2021-01-21 09:04:23,763 epoch 17 - iter 3332/4766 - loss 0.13826631 - samples/sec: 5.35 - lr: 0.000000
2021-01-21 09:07:47,606 epoch 17 - iter 3808/4766 - loss 0.13959091 - samples/sec: 9.34 - lr: 0.000000
2021-01-21 09:10:58,844 epoch 17 - iter 4284/4766 - loss 0.13834961 - samples/sec: 9.96 - lr: 0.000000
2021-01-21 09:14:07,816 epoch 17 - iter 4760/4766 - loss 0.14037759 - samples/sec: 10.08 - lr: 0.000000
2021-01-21 09:14:10,160 ----------------------------------------------------------------------------------------------------
2021-01-21 09:14:10,160 EPOCH 17 done: loss 0.1403 - lr 0.0000003
2021-01-21 09:14:10,160 BAD EPOCHS (no improvement): 4
2021-01-21 09:14:10,181 ----------------------------------------------------------------------------------------------------
2021-01-21 09:17:20,231 epoch 18 - iter 476/4766 - loss 0.13481177 - samples/sec: 10.02 - lr: 0.000000
2021-01-21 09:20:31,285 epoch 18 - iter 952/4766 - loss 0.12601264 - samples/sec: 9.97 - lr: 0.000000
2021-01-21 09:23:41,236 epoch 18 - iter 1428/4766 - loss 0.12608326 - samples/sec: 10.02 - lr: 0.000000
2021-01-21 09:26:51,839 epoch 18 - iter 1904/4766 - loss 0.13399083 - samples/sec: 9.99 - lr: 0.000000
2021-01-21 09:30:03,764 epoch 18 - iter 2380/4766 - loss 0.13876490 - samples/sec: 9.92 - lr: 0.000000
2021-01-21 09:33:15,574 epoch 18 - iter 2856/4766 - loss 0.13878700 - samples/sec: 9.93 - lr: 0.000000
2021-01-21 09:36:26,971 epoch 18 - iter 3332/4766 - loss 0.14409246 - samples/sec: 9.95 - lr: 0.000000
2021-01-21 09:39:37,934 epoch 18 - iter 3808/4766 - loss 0.14454244 - samples/sec: 9.97 - lr: 0.000000
2021-01-21 09:42:48,260 epoch 18 - iter 4284/4766 - loss 0.14386075 - samples/sec: 10.00 - lr: 0.000000
2021-01-21 09:45:58,345 epoch 18 - iter 4760/4766 - loss 0.14489400 - samples/sec: 10.02 - lr: 0.000000
2021-01-21 09:46:00,567 ----------------------------------------------------------------------------------------------------
2021-01-21 09:46:00,567 EPOCH 18 done: loss 0.1448 - lr 0.0000001
2021-01-21 09:46:00,567 BAD EPOCHS (no improvement): 4
2021-01-21 09:46:00,570 ----------------------------------------------------------------------------------------------------
2021-01-21 09:49:13,016 epoch 19 - iter 476/4766 - loss 0.16550822 - samples/sec: 9.89 - lr: 0.000000
2021-01-21 09:52:27,091 epoch 19 - iter 952/4766 - loss 0.13214122 - samples/sec: 9.81 - lr: 0.000000
2021-01-21 09:55:42,085 epoch 19 - iter 1428/4766 - loss 0.13831234 - samples/sec: 9.77 - lr: 0.000000
2021-01-21 09:58:56,680 epoch 19 - iter 1904/4766 - loss 0.13832571 - samples/sec: 9.79 - lr: 0.000000
2021-01-21 10:02:12,350 epoch 19 - iter 2380/4766 - loss 0.13808449 - samples/sec: 9.73 - lr: 0.000000
2021-01-21 10:05:26,205 epoch 19 - iter 2856/4766 - loss 0.13753814 - samples/sec: 9.82 - lr: 0.000000
2021-01-21 10:08:40,777 epoch 19 - iter 3332/4766 - loss 0.13826467 - samples/sec: 9.79 - lr: 0.000000
2021-01-21 10:11:55,648 epoch 19 - iter 3808/4766 - loss 0.14029889 - samples/sec: 9.77 - lr: 0.000000
2021-01-21 10:15:10,349 epoch 19 - iter 4284/4766 - loss 0.13696667 - samples/sec: 9.78 - lr: 0.000000
2021-01-21 10:18:24,777 epoch 19 - iter 4760/4766 - loss 0.13874853 - samples/sec: 9.79 - lr: 0.000000
2021-01-21 10:18:27,049 ----------------------------------------------------------------------------------------------------
2021-01-21 10:18:27,049 EPOCH 19 done: loss 0.1386 - lr 0.0000000
2021-01-21 10:18:27,049 BAD EPOCHS (no improvement): 4
2021-01-21 10:18:27,582 ----------------------------------------------------------------------------------------------------
2021-01-21 10:21:42,494 epoch 20 - iter 476/4766 - loss 0.11851291 - samples/sec: 9.77 - lr: 0.000000
2021-01-21 10:24:56,145 epoch 20 - iter 952/4766 - loss 0.13441288 - samples/sec: 9.83 - lr: 0.000000
2021-01-21 10:28:10,170 epoch 20 - iter 1428/4766 - loss 0.14083137 - samples/sec: 9.81 - lr: 0.000000
2021-01-21 10:31:25,784 epoch 20 - iter 1904/4766 - loss 0.14039091 - samples/sec: 9.73 - lr: 0.000000
2021-01-21 10:34:40,300 epoch 20 - iter 2380/4766 - loss 0.14164687 - samples/sec: 9.79 - lr: 0.000000
2021-01-21 10:37:54,324 epoch 20 - iter 2856/4766 - loss 0.13843665 - samples/sec: 9.81 - lr: 0.000000
2021-01-21 10:41:05,695 epoch 20 - iter 3332/4766 - loss 0.13902040 - samples/sec: 9.95 - lr: 0.000000
2021-01-21 10:44:16,299 epoch 20 - iter 3808/4766 - loss 0.13728566 - samples/sec: 9.99 - lr: 0.000000
2021-01-21 10:47:26,320 epoch 20 - iter 4284/4766 - loss 0.13661214 - samples/sec: 10.02 - lr: 0.000000
2021-01-21 10:50:35,967 epoch 20 - iter 4760/4766 - loss 0.13488013 - samples/sec: 10.04 - lr: 0.000000
2021-01-21 10:50:38,248 ----------------------------------------------------------------------------------------------------
2021-01-21 10:50:38,248 EPOCH 20 done: loss 0.1348 - lr 0.0000000
2021-01-21 10:50:38,248 BAD EPOCHS (no improvement): 4
2021-01-21 10:51:28,424 ----------------------------------------------------------------------------------------------------
2021-01-21 10:51:28,425 Testing using best model ...
2021-01-21 10:54:06,963 0.9530	0.9520	0.9525
2021-01-21 10:54:06,963 
Results:
- F1-score (micro) 0.9525
- F1-score (macro) 0.9528

By class:
LOC        tp: 751 - fp: 36 - fn: 23 - precision: 0.9543 - recall: 0.9703 - f1-score: 0.9622
MISC       tp: 1095 - fp: 56 - fn: 92 - precision: 0.9513 - recall: 0.9225 - f1-score: 0.9367
ORG        tp: 834 - fp: 59 - fn: 48 - precision: 0.9339 - recall: 0.9456 - f1-score: 0.9397
PER        tp: 1072 - fp: 34 - fn: 26 - precision: 0.9693 - recall: 0.9763 - f1-score: 0.9728
2021-01-21 10:54:06,963 ----------------------------------------------------------------------------------------------------