|
import matplotlib |
|
import numpy as np |
|
import torch |
|
|
|
def colorize_depth_maps( |
|
depth_map, min_depth, max_depth, cmap="Spectral", valid_mask=None |
|
): |
|
""" |
|
Colorize depth maps. |
|
""" |
|
assert len(depth_map.shape) >= 2, "Invalid dimension" |
|
|
|
if isinstance(depth_map, torch.Tensor): |
|
depth = depth_map.detach().squeeze().numpy() |
|
elif isinstance(depth_map, np.ndarray): |
|
depth = depth_map.copy().squeeze() |
|
|
|
if depth.ndim < 3: |
|
depth = depth[np.newaxis, :, :] |
|
|
|
|
|
cm = matplotlib.colormaps[cmap] |
|
depth = ((depth - min_depth) / (max_depth - min_depth)).clip(0, 1) |
|
img_colored_np = cm(depth, bytes=False)[:, :, :, 0:3] |
|
img_colored_np = np.rollaxis(img_colored_np, 3, 1) |
|
|
|
if valid_mask is not None: |
|
if isinstance(depth_map, torch.Tensor): |
|
valid_mask = valid_mask.detach().numpy() |
|
valid_mask = valid_mask.squeeze() |
|
if valid_mask.ndim < 3: |
|
valid_mask = valid_mask[np.newaxis, np.newaxis, :, :] |
|
else: |
|
valid_mask = valid_mask[:, np.newaxis, :, :] |
|
valid_mask = np.repeat(valid_mask, 3, axis=1) |
|
img_colored_np[~valid_mask] = 0 |
|
|
|
if isinstance(depth_map, torch.Tensor): |
|
img_colored = torch.from_numpy(img_colored_np).float() |
|
elif isinstance(depth_map, np.ndarray): |
|
img_colored = img_colored_np |
|
|
|
return img_colored |
|
|
|
|
|
def scale_depth_to_model(depth, camera_type='ortho'): |
|
""" |
|
Scale depth from the original range. |
|
""" |
|
assert camera_type == 'ortho' or camera_type == 'persp' |
|
w, h = depth.shape |
|
|
|
if camera_type == 'ortho': |
|
original_min = 9000 |
|
original_max = 17000 |
|
target_min = 2000 |
|
target_max = 62000 |
|
|
|
mask = depth != 0 |
|
|
|
depth_normalized = np.zeros([w, h]) |
|
depth_normalized[mask] = (depth[mask] - original_min) / (original_max - original_min) |
|
|
|
|
|
scaled_depth = np.zeros([w, h]) |
|
scaled_depth[mask] = depth_normalized[mask] * (target_max - target_min) + target_min |
|
|
|
else: |
|
original_min = 4000 |
|
original_max = 13000 |
|
target_min = 2000 |
|
target_max = 62000 |
|
|
|
mask = depth != 0 |
|
|
|
depth_normalized = np.zeros([w, h]) |
|
depth_normalized[mask] = (depth[mask] - original_min) / (original_max - original_min) |
|
|
|
|
|
scaled_depth = np.zeros([w, h]) |
|
scaled_depth[mask] = depth_normalized[mask] * (target_max - target_min) + target_min |
|
|
|
scaled_depth[scaled_depth > 62000] = 0 |
|
scaled_depth = scaled_depth / 65535. |
|
|
|
return scaled_depth |
|
|
|
def rescale_depth_to_world(scaled_depth, camera_type='ortho'): |
|
""" |
|
Rescale depth from the scaled range back to the original range. |
|
""" |
|
assert camera_type == 'ortho' or camera_type == 'persp' |
|
scaled_depth = scaled_depth * 65535. |
|
w, h = scaled_depth.shape |
|
|
|
if camera_type == 'ortho': |
|
original_min = 9000 |
|
original_max = 17000 |
|
target_min = 2000 |
|
target_max = 62000 |
|
|
|
mask = scaled_depth != 0 |
|
rescaled_depth_norm = np.zeros([w, h]) |
|
|
|
rescaled_depth_norm[mask] = (scaled_depth[mask] - target_min) / (target_max - target_min) |
|
|
|
|
|
rescaled_depth = np.zeros([w, h]) |
|
rescaled_depth[mask] = rescaled_depth_norm[mask] * (original_max - original_min) + original_min |
|
|
|
else: |
|
original_min = 4000 |
|
original_max = 13000 |
|
target_min = 2000 |
|
target_max = 62000 |
|
|
|
mask = scaled_depth != 0 |
|
rescaled_depth_norm = np.zeros([w, h]) |
|
|
|
rescaled_depth_norm[mask] = (scaled_depth[mask] - target_min) / (target_max - target_min) |
|
|
|
|
|
rescaled_depth = np.zeros([w, h]) |
|
rescaled_depth[mask] = rescaled_depth_norm[mask] * (original_max - original_min) + original_min |
|
|
|
return rescaled_depth |