|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Any, Dict, Optional, Tuple |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
from diffusers.utils import is_torch_version, logging |
|
from diffusers.models.attention import AdaGroupNorm |
|
from diffusers.models.attention_processor import Attention, AttnAddedKVProcessor, AttnAddedKVProcessor2_0 |
|
from diffusers.models.dual_transformer_2d import DualTransformer2DModel |
|
from diffusers.models.resnet import Downsample2D, FirDownsample2D, FirUpsample2D, KDownsample2D, KUpsample2D, ResnetBlock2D, Upsample2D |
|
from mvdiffusion.models.transformer_mv2d import TransformerMV2DModel |
|
|
|
from diffusers.models.unet_2d_blocks import DownBlock2D, ResnetDownsampleBlock2D, AttnDownBlock2D, CrossAttnDownBlock2D, SimpleCrossAttnDownBlock2D, SkipDownBlock2D, AttnSkipDownBlock2D, DownEncoderBlock2D, AttnDownEncoderBlock2D, KDownBlock2D, KCrossAttnDownBlock2D |
|
from diffusers.models.unet_2d_blocks import UpBlock2D, ResnetUpsampleBlock2D, CrossAttnUpBlock2D, SimpleCrossAttnUpBlock2D, AttnUpBlock2D, SkipUpBlock2D, AttnSkipUpBlock2D, UpDecoderBlock2D, AttnUpDecoderBlock2D, KUpBlock2D, KCrossAttnUpBlock2D |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def get_down_block( |
|
down_block_type, |
|
num_layers, |
|
in_channels, |
|
out_channels, |
|
temb_channels, |
|
add_downsample, |
|
resnet_eps, |
|
resnet_act_fn, |
|
transformer_layers_per_block=1, |
|
num_attention_heads=None, |
|
resnet_groups=None, |
|
cross_attention_dim=None, |
|
downsample_padding=None, |
|
dual_cross_attention=False, |
|
use_linear_projection=False, |
|
only_cross_attention=False, |
|
upcast_attention=False, |
|
resnet_time_scale_shift="default", |
|
resnet_skip_time_act=False, |
|
resnet_out_scale_factor=1.0, |
|
cross_attention_norm=None, |
|
attention_head_dim=None, |
|
downsample_type=None, |
|
num_views=1, |
|
cd_attention_last: bool = False, |
|
cd_attention_mid: bool = False, |
|
multiview_attention: bool = True, |
|
sparse_mv_attention: bool = False, |
|
mvcd_attention: bool=False |
|
): |
|
|
|
if attention_head_dim is None: |
|
logger.warn( |
|
f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}." |
|
) |
|
attention_head_dim = num_attention_heads |
|
|
|
down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type |
|
if down_block_type == "DownBlock2D": |
|
return DownBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
add_downsample=add_downsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
downsample_padding=downsample_padding, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
) |
|
elif down_block_type == "ResnetDownsampleBlock2D": |
|
return ResnetDownsampleBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
add_downsample=add_downsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
skip_time_act=resnet_skip_time_act, |
|
output_scale_factor=resnet_out_scale_factor, |
|
) |
|
elif down_block_type == "AttnDownBlock2D": |
|
if add_downsample is False: |
|
downsample_type = None |
|
else: |
|
downsample_type = downsample_type or "conv" |
|
return AttnDownBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
downsample_padding=downsample_padding, |
|
attention_head_dim=attention_head_dim, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
downsample_type=downsample_type, |
|
) |
|
elif down_block_type == "CrossAttnDownBlock2D": |
|
if cross_attention_dim is None: |
|
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D") |
|
return CrossAttnDownBlock2D( |
|
num_layers=num_layers, |
|
transformer_layers_per_block=transformer_layers_per_block, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
add_downsample=add_downsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
downsample_padding=downsample_padding, |
|
cross_attention_dim=cross_attention_dim, |
|
num_attention_heads=num_attention_heads, |
|
dual_cross_attention=dual_cross_attention, |
|
use_linear_projection=use_linear_projection, |
|
only_cross_attention=only_cross_attention, |
|
upcast_attention=upcast_attention, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
) |
|
|
|
elif down_block_type == "CrossAttnDownBlockMV2D": |
|
if cross_attention_dim is None: |
|
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlockMV2D") |
|
return CrossAttnDownBlockMV2D( |
|
num_layers=num_layers, |
|
transformer_layers_per_block=transformer_layers_per_block, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
add_downsample=add_downsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
downsample_padding=downsample_padding, |
|
cross_attention_dim=cross_attention_dim, |
|
num_attention_heads=num_attention_heads, |
|
dual_cross_attention=dual_cross_attention, |
|
use_linear_projection=use_linear_projection, |
|
only_cross_attention=only_cross_attention, |
|
upcast_attention=upcast_attention, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
num_views=num_views, |
|
cd_attention_last=cd_attention_last, |
|
cd_attention_mid=cd_attention_mid, |
|
multiview_attention=multiview_attention, |
|
sparse_mv_attention=sparse_mv_attention, |
|
mvcd_attention=mvcd_attention |
|
) |
|
elif down_block_type == "SimpleCrossAttnDownBlock2D": |
|
if cross_attention_dim is None: |
|
raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnDownBlock2D") |
|
return SimpleCrossAttnDownBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
add_downsample=add_downsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
cross_attention_dim=cross_attention_dim, |
|
attention_head_dim=attention_head_dim, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
skip_time_act=resnet_skip_time_act, |
|
output_scale_factor=resnet_out_scale_factor, |
|
only_cross_attention=only_cross_attention, |
|
cross_attention_norm=cross_attention_norm, |
|
) |
|
elif down_block_type == "SkipDownBlock2D": |
|
return SkipDownBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
add_downsample=add_downsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
downsample_padding=downsample_padding, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
) |
|
elif down_block_type == "AttnSkipDownBlock2D": |
|
return AttnSkipDownBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
add_downsample=add_downsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
attention_head_dim=attention_head_dim, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
) |
|
elif down_block_type == "DownEncoderBlock2D": |
|
return DownEncoderBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
add_downsample=add_downsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
downsample_padding=downsample_padding, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
) |
|
elif down_block_type == "AttnDownEncoderBlock2D": |
|
return AttnDownEncoderBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
add_downsample=add_downsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
downsample_padding=downsample_padding, |
|
attention_head_dim=attention_head_dim, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
) |
|
elif down_block_type == "KDownBlock2D": |
|
return KDownBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
add_downsample=add_downsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
) |
|
elif down_block_type == "KCrossAttnDownBlock2D": |
|
return KCrossAttnDownBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
add_downsample=add_downsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
cross_attention_dim=cross_attention_dim, |
|
attention_head_dim=attention_head_dim, |
|
add_self_attention=True if not add_downsample else False, |
|
) |
|
raise ValueError(f"{down_block_type} does not exist.") |
|
|
|
|
|
def get_up_block( |
|
up_block_type, |
|
num_layers, |
|
in_channels, |
|
out_channels, |
|
prev_output_channel, |
|
temb_channels, |
|
add_upsample, |
|
resnet_eps, |
|
resnet_act_fn, |
|
transformer_layers_per_block=1, |
|
num_attention_heads=None, |
|
resnet_groups=None, |
|
cross_attention_dim=None, |
|
dual_cross_attention=False, |
|
use_linear_projection=False, |
|
only_cross_attention=False, |
|
upcast_attention=False, |
|
resnet_time_scale_shift="default", |
|
resnet_skip_time_act=False, |
|
resnet_out_scale_factor=1.0, |
|
cross_attention_norm=None, |
|
attention_head_dim=None, |
|
upsample_type=None, |
|
num_views=1, |
|
cd_attention_last: bool = False, |
|
cd_attention_mid: bool = False, |
|
multiview_attention: bool = True, |
|
sparse_mv_attention: bool = False, |
|
mvcd_attention: bool=False |
|
): |
|
|
|
if attention_head_dim is None: |
|
logger.warn( |
|
f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}." |
|
) |
|
attention_head_dim = num_attention_heads |
|
|
|
up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type |
|
if up_block_type == "UpBlock2D": |
|
return UpBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
prev_output_channel=prev_output_channel, |
|
temb_channels=temb_channels, |
|
add_upsample=add_upsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
) |
|
elif up_block_type == "ResnetUpsampleBlock2D": |
|
return ResnetUpsampleBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
prev_output_channel=prev_output_channel, |
|
temb_channels=temb_channels, |
|
add_upsample=add_upsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
skip_time_act=resnet_skip_time_act, |
|
output_scale_factor=resnet_out_scale_factor, |
|
) |
|
elif up_block_type == "CrossAttnUpBlock2D": |
|
if cross_attention_dim is None: |
|
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D") |
|
return CrossAttnUpBlock2D( |
|
num_layers=num_layers, |
|
transformer_layers_per_block=transformer_layers_per_block, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
prev_output_channel=prev_output_channel, |
|
temb_channels=temb_channels, |
|
add_upsample=add_upsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
cross_attention_dim=cross_attention_dim, |
|
num_attention_heads=num_attention_heads, |
|
dual_cross_attention=dual_cross_attention, |
|
use_linear_projection=use_linear_projection, |
|
only_cross_attention=only_cross_attention, |
|
upcast_attention=upcast_attention, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
) |
|
|
|
elif up_block_type == "CrossAttnUpBlockMV2D": |
|
if cross_attention_dim is None: |
|
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlockMV2D") |
|
return CrossAttnUpBlockMV2D( |
|
num_layers=num_layers, |
|
transformer_layers_per_block=transformer_layers_per_block, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
prev_output_channel=prev_output_channel, |
|
temb_channels=temb_channels, |
|
add_upsample=add_upsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
cross_attention_dim=cross_attention_dim, |
|
num_attention_heads=num_attention_heads, |
|
dual_cross_attention=dual_cross_attention, |
|
use_linear_projection=use_linear_projection, |
|
only_cross_attention=only_cross_attention, |
|
upcast_attention=upcast_attention, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
num_views=num_views, |
|
cd_attention_last=cd_attention_last, |
|
cd_attention_mid=cd_attention_mid, |
|
multiview_attention=multiview_attention, |
|
sparse_mv_attention=sparse_mv_attention, |
|
mvcd_attention=mvcd_attention |
|
) |
|
elif up_block_type == "SimpleCrossAttnUpBlock2D": |
|
if cross_attention_dim is None: |
|
raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnUpBlock2D") |
|
return SimpleCrossAttnUpBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
prev_output_channel=prev_output_channel, |
|
temb_channels=temb_channels, |
|
add_upsample=add_upsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
cross_attention_dim=cross_attention_dim, |
|
attention_head_dim=attention_head_dim, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
skip_time_act=resnet_skip_time_act, |
|
output_scale_factor=resnet_out_scale_factor, |
|
only_cross_attention=only_cross_attention, |
|
cross_attention_norm=cross_attention_norm, |
|
) |
|
elif up_block_type == "AttnUpBlock2D": |
|
if add_upsample is False: |
|
upsample_type = None |
|
else: |
|
upsample_type = upsample_type or "conv" |
|
|
|
return AttnUpBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
prev_output_channel=prev_output_channel, |
|
temb_channels=temb_channels, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
attention_head_dim=attention_head_dim, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
upsample_type=upsample_type, |
|
) |
|
elif up_block_type == "SkipUpBlock2D": |
|
return SkipUpBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
prev_output_channel=prev_output_channel, |
|
temb_channels=temb_channels, |
|
add_upsample=add_upsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
) |
|
elif up_block_type == "AttnSkipUpBlock2D": |
|
return AttnSkipUpBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
prev_output_channel=prev_output_channel, |
|
temb_channels=temb_channels, |
|
add_upsample=add_upsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
attention_head_dim=attention_head_dim, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
) |
|
elif up_block_type == "UpDecoderBlock2D": |
|
return UpDecoderBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
add_upsample=add_upsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
temb_channels=temb_channels, |
|
) |
|
elif up_block_type == "AttnUpDecoderBlock2D": |
|
return AttnUpDecoderBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
add_upsample=add_upsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
attention_head_dim=attention_head_dim, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
temb_channels=temb_channels, |
|
) |
|
elif up_block_type == "KUpBlock2D": |
|
return KUpBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
add_upsample=add_upsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
) |
|
elif up_block_type == "KCrossAttnUpBlock2D": |
|
return KCrossAttnUpBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
add_upsample=add_upsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
cross_attention_dim=cross_attention_dim, |
|
attention_head_dim=attention_head_dim, |
|
) |
|
|
|
raise ValueError(f"{up_block_type} does not exist.") |
|
|
|
|
|
class UNetMidBlockMV2DCrossAttn(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
temb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
transformer_layers_per_block: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
num_attention_heads=1, |
|
output_scale_factor=1.0, |
|
cross_attention_dim=1280, |
|
dual_cross_attention=False, |
|
use_linear_projection=False, |
|
upcast_attention=False, |
|
num_views: int = 1, |
|
cd_attention_last: bool = False, |
|
cd_attention_mid: bool = False, |
|
multiview_attention: bool = True, |
|
sparse_mv_attention: bool = False, |
|
mvcd_attention: bool=False |
|
): |
|
super().__init__() |
|
|
|
self.has_cross_attention = True |
|
self.num_attention_heads = num_attention_heads |
|
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) |
|
|
|
|
|
resnets = [ |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=in_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
] |
|
attentions = [] |
|
|
|
for _ in range(num_layers): |
|
if not dual_cross_attention: |
|
attentions.append( |
|
TransformerMV2DModel( |
|
num_attention_heads, |
|
in_channels // num_attention_heads, |
|
in_channels=in_channels, |
|
num_layers=transformer_layers_per_block, |
|
cross_attention_dim=cross_attention_dim, |
|
norm_num_groups=resnet_groups, |
|
use_linear_projection=use_linear_projection, |
|
upcast_attention=upcast_attention, |
|
num_views=num_views, |
|
cd_attention_last=cd_attention_last, |
|
cd_attention_mid=cd_attention_mid, |
|
multiview_attention=multiview_attention, |
|
sparse_mv_attention=sparse_mv_attention, |
|
mvcd_attention=mvcd_attention |
|
) |
|
) |
|
else: |
|
raise NotImplementedError |
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=in_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
|
|
self.attentions = nn.ModuleList(attentions) |
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
temb: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
) -> torch.FloatTensor: |
|
hidden_states = self.resnets[0](hidden_states, temb) |
|
for attn, resnet in zip(self.attentions, self.resnets[1:]): |
|
hidden_states = attn( |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
attention_mask=attention_mask, |
|
encoder_attention_mask=encoder_attention_mask, |
|
return_dict=False, |
|
)[0] |
|
hidden_states = resnet(hidden_states, temb) |
|
|
|
return hidden_states |
|
|
|
|
|
class CrossAttnUpBlockMV2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
prev_output_channel: int, |
|
temb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
transformer_layers_per_block: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
num_attention_heads=1, |
|
cross_attention_dim=1280, |
|
output_scale_factor=1.0, |
|
add_upsample=True, |
|
dual_cross_attention=False, |
|
use_linear_projection=False, |
|
only_cross_attention=False, |
|
upcast_attention=False, |
|
num_views: int = 1, |
|
cd_attention_last: bool = False, |
|
cd_attention_mid: bool = False, |
|
multiview_attention: bool = True, |
|
sparse_mv_attention: bool = False, |
|
mvcd_attention: bool=False |
|
): |
|
super().__init__() |
|
resnets = [] |
|
attentions = [] |
|
|
|
self.has_cross_attention = True |
|
self.num_attention_heads = num_attention_heads |
|
|
|
for i in range(num_layers): |
|
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels |
|
resnet_in_channels = prev_output_channel if i == 0 else out_channels |
|
|
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=resnet_in_channels + res_skip_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
if not dual_cross_attention: |
|
attentions.append( |
|
TransformerMV2DModel( |
|
num_attention_heads, |
|
out_channels // num_attention_heads, |
|
in_channels=out_channels, |
|
num_layers=transformer_layers_per_block, |
|
cross_attention_dim=cross_attention_dim, |
|
norm_num_groups=resnet_groups, |
|
use_linear_projection=use_linear_projection, |
|
only_cross_attention=only_cross_attention, |
|
upcast_attention=upcast_attention, |
|
num_views=num_views, |
|
cd_attention_last=cd_attention_last, |
|
cd_attention_mid=cd_attention_mid, |
|
multiview_attention=multiview_attention, |
|
sparse_mv_attention=sparse_mv_attention, |
|
mvcd_attention=mvcd_attention |
|
) |
|
) |
|
else: |
|
raise NotImplementedError |
|
self.attentions = nn.ModuleList(attentions) |
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
if add_upsample: |
|
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) |
|
else: |
|
self.upsamplers = None |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], |
|
temb: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
upsample_size: Optional[int] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
): |
|
for resnet, attn in zip(self.resnets, self.attentions): |
|
|
|
res_hidden_states = res_hidden_states_tuple[-1] |
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1] |
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) |
|
|
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module, return_dict=None): |
|
def custom_forward(*inputs): |
|
if return_dict is not None: |
|
return module(*inputs, return_dict=return_dict) |
|
else: |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(resnet), |
|
hidden_states, |
|
temb, |
|
**ckpt_kwargs, |
|
) |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(attn, return_dict=False), |
|
hidden_states, |
|
encoder_hidden_states, |
|
None, |
|
None, |
|
cross_attention_kwargs, |
|
attention_mask, |
|
encoder_attention_mask, |
|
**ckpt_kwargs, |
|
)[0] |
|
else: |
|
hidden_states = resnet(hidden_states, temb) |
|
hidden_states = attn( |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
attention_mask=attention_mask, |
|
encoder_attention_mask=encoder_attention_mask, |
|
return_dict=False, |
|
)[0] |
|
|
|
if self.upsamplers is not None: |
|
for upsampler in self.upsamplers: |
|
hidden_states = upsampler(hidden_states, upsample_size) |
|
|
|
return hidden_states |
|
|
|
|
|
class CrossAttnDownBlockMV2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
temb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
transformer_layers_per_block: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
num_attention_heads=1, |
|
cross_attention_dim=1280, |
|
output_scale_factor=1.0, |
|
downsample_padding=1, |
|
add_downsample=True, |
|
dual_cross_attention=False, |
|
use_linear_projection=False, |
|
only_cross_attention=False, |
|
upcast_attention=False, |
|
num_views: int = 1, |
|
cd_attention_last: bool = False, |
|
cd_attention_mid: bool = False, |
|
multiview_attention: bool = True, |
|
sparse_mv_attention: bool = False, |
|
mvcd_attention: bool=False |
|
): |
|
super().__init__() |
|
resnets = [] |
|
attentions = [] |
|
|
|
self.has_cross_attention = True |
|
self.num_attention_heads = num_attention_heads |
|
|
|
for i in range(num_layers): |
|
in_channels = in_channels if i == 0 else out_channels |
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
if not dual_cross_attention: |
|
attentions.append( |
|
TransformerMV2DModel( |
|
num_attention_heads, |
|
out_channels // num_attention_heads, |
|
in_channels=out_channels, |
|
num_layers=transformer_layers_per_block, |
|
cross_attention_dim=cross_attention_dim, |
|
norm_num_groups=resnet_groups, |
|
use_linear_projection=use_linear_projection, |
|
only_cross_attention=only_cross_attention, |
|
upcast_attention=upcast_attention, |
|
num_views=num_views, |
|
cd_attention_last=cd_attention_last, |
|
cd_attention_mid=cd_attention_mid, |
|
multiview_attention=multiview_attention, |
|
sparse_mv_attention=sparse_mv_attention, |
|
mvcd_attention=mvcd_attention |
|
) |
|
) |
|
else: |
|
raise NotImplementedError |
|
self.attentions = nn.ModuleList(attentions) |
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
if add_downsample: |
|
self.downsamplers = nn.ModuleList( |
|
[ |
|
Downsample2D( |
|
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" |
|
) |
|
] |
|
) |
|
else: |
|
self.downsamplers = None |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
temb: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
additional_residuals=None, |
|
): |
|
output_states = () |
|
|
|
blocks = list(zip(self.resnets, self.attentions)) |
|
|
|
for i, (resnet, attn) in enumerate(blocks): |
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module, return_dict=None): |
|
def custom_forward(*inputs): |
|
if return_dict is not None: |
|
return module(*inputs, return_dict=return_dict) |
|
else: |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(resnet), |
|
hidden_states, |
|
temb, |
|
**ckpt_kwargs, |
|
) |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(attn, return_dict=False), |
|
hidden_states, |
|
encoder_hidden_states, |
|
None, |
|
None, |
|
cross_attention_kwargs, |
|
attention_mask, |
|
encoder_attention_mask, |
|
**ckpt_kwargs, |
|
)[0] |
|
else: |
|
hidden_states = resnet(hidden_states, temb) |
|
hidden_states = attn( |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
attention_mask=attention_mask, |
|
encoder_attention_mask=encoder_attention_mask, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if i == len(blocks) - 1 and additional_residuals is not None: |
|
hidden_states = hidden_states + additional_residuals |
|
|
|
output_states = output_states + (hidden_states,) |
|
|
|
if self.downsamplers is not None: |
|
for downsampler in self.downsamplers: |
|
hidden_states = downsampler(hidden_states) |
|
|
|
output_states = output_states + (hidden_states,) |
|
|
|
return hidden_states, output_states |
|
|
|
|