Upload 5 files
Browse files- attention.py +255 -19
- blocks.py +9 -4
- is_torch_version.py +56 -0
- modeling_mpt.py +68 -5
attention.py
CHANGED
@@ -1,13 +1,72 @@
|
|
1 |
"""Attention layers."""
|
2 |
import math
|
3 |
import warnings
|
4 |
-
from typing import Optional
|
5 |
import torch
|
6 |
import torch.nn as nn
|
7 |
from einops import rearrange
|
8 |
from packaging import version
|
9 |
from torch import nn
|
|
|
10 |
from .norm import LPLayerNorm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
def _reset_is_causal(num_query_tokens: int, num_key_tokens: int, original_is_causal: bool):
|
13 |
if original_is_causal and num_query_tokens != num_key_tokens:
|
@@ -17,7 +76,20 @@ def _reset_is_causal(num_query_tokens: int, num_key_tokens: int, original_is_cau
|
|
17 |
return False
|
18 |
return original_is_causal
|
19 |
|
20 |
-
def scaled_multihead_dot_product_attention(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
q = rearrange(query, 'b s (h d) -> b h s d', h=n_heads)
|
22 |
k = rearrange(key, 'b s (h d) -> b h d s', h=1 if multiquery else n_heads)
|
23 |
v = rearrange(value, 'b s (h d) -> b h s d', h=1 if multiquery else n_heads)
|
@@ -33,7 +105,7 @@ def scaled_multihead_dot_product_attention(query, key, value, n_heads, softmax_s
|
|
33 |
attn_weight = attn_weight + attn_bias
|
34 |
if key_padding_mask is not None:
|
35 |
if attn_bias is not None:
|
36 |
-
warnings.warn('
|
37 |
attn_weight = attn_weight.masked_fill(~key_padding_mask.view((b, 1, 1, s_k)), min_val)
|
38 |
if is_causal:
|
39 |
s = max(s_q, s_k)
|
@@ -49,8 +121,8 @@ def scaled_multihead_dot_product_attention(query, key, value, n_heads, softmax_s
|
|
49 |
out = attn_weight.matmul(v)
|
50 |
out = rearrange(out, 'b h s d -> b s (h d)')
|
51 |
if needs_weights:
|
52 |
-
return (out, attn_weight)
|
53 |
-
return (out, None)
|
54 |
|
55 |
def check_valid_inputs(*tensors, valid_dtypes=[torch.float16, torch.bfloat16]):
|
56 |
for tensor in tensors:
|
@@ -59,7 +131,20 @@ def check_valid_inputs(*tensors, valid_dtypes=[torch.float16, torch.bfloat16]):
|
|
59 |
if not tensor.is_cuda:
|
60 |
raise TypeError(f'Inputs must be cuda tensors (tensor.is_cuda={tensor.is_cuda!r}).')
|
61 |
|
62 |
-
def flash_attn_fn(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
try:
|
64 |
from flash_attn import bert_padding, flash_attn_interface
|
65 |
except:
|
@@ -84,9 +169,22 @@ def flash_attn_fn(query, key, value, n_heads, softmax_scale=None, attn_bias=None
|
|
84 |
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
|
85 |
output_unpad = flash_attn_interface.flash_attn_unpadded_func(query_unpad, key_unpad, value_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights)
|
86 |
output = bert_padding.pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size, seqlen)
|
87 |
-
return (output, None)
|
88 |
|
89 |
-
def triton_flash_attn_fn(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
try:
|
91 |
from .flash_attn_triton import flash_attn_func
|
92 |
except:
|
@@ -119,14 +217,16 @@ def triton_flash_attn_fn(query, key, value, n_heads, softmax_scale=None, attn_bi
|
|
119 |
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
|
120 |
attn_output = flash_attn_func(query, key, value, attn_bias, reset_is_causal, softmax_scale)
|
121 |
output = attn_output.view(*attn_output.shape[:2], -1)
|
122 |
-
return (output, None)
|
123 |
|
124 |
-
class MultiheadAttention(nn.Module):
|
125 |
"""Multi-head self attention.
|
126 |
|
127 |
Using torch or triton attention implemetation enables user to also use
|
128 |
additive bias.
|
129 |
"""
|
|
|
|
|
130 |
|
131 |
def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, low_precision_layernorm: bool=False, device: Optional[str]=None):
|
132 |
super().__init__()
|
@@ -160,7 +260,15 @@ class MultiheadAttention(nn.Module):
|
|
160 |
self.out_proj = nn.Linear(self.d_model, self.d_model, device=device)
|
161 |
self.out_proj._is_residual = True
|
162 |
|
163 |
-
def forward(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
qkv = self.Wqkv(x)
|
165 |
if self.clip_qkv:
|
166 |
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
|
@@ -174,13 +282,73 @@ class MultiheadAttention(nn.Module):
|
|
174 |
if len(past_key_value) != 0:
|
175 |
key = torch.cat([past_key_value[0], key], dim=1)
|
176 |
value = torch.cat([past_key_value[1], value], dim=1)
|
177 |
-
past_key_value = (key, value)
|
178 |
if attn_bias is not None:
|
179 |
attn_bias = attn_bias[:, :, -query.size(1):, -key.size(1):]
|
180 |
-
|
181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
-
class MultiQueryAttention(nn.Module):
|
184 |
"""Multi-Query self attention.
|
185 |
|
186 |
Using torch or triton attention implemetation enables user to also use
|
@@ -220,7 +388,15 @@ class MultiQueryAttention(nn.Module):
|
|
220 |
self.out_proj = nn.Linear(self.d_model, self.d_model, device=device)
|
221 |
self.out_proj._is_residual = True
|
222 |
|
223 |
-
def forward(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
qkv = self.Wqkv(x)
|
225 |
if self.clip_qkv:
|
226 |
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
|
@@ -234,11 +410,71 @@ class MultiQueryAttention(nn.Module):
|
|
234 |
if len(past_key_value) != 0:
|
235 |
key = torch.cat([past_key_value[0], key], dim=1)
|
236 |
value = torch.cat([past_key_value[1], value], dim=1)
|
237 |
-
past_key_value = (key, value)
|
238 |
if attn_bias is not None:
|
239 |
attn_bias = attn_bias[:, :, -query.size(1):, -key.size(1):]
|
240 |
-
|
241 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
|
243 |
def attn_bias_shape(attn_impl, n_heads, seq_len, alibi, prefix_lm, causal, use_sequence_id):
|
244 |
if attn_impl == 'flash':
|
|
|
1 |
"""Attention layers."""
|
2 |
import math
|
3 |
import warnings
|
4 |
+
from typing import Optional, Dict, Any, NamedTuple, Protocol, Tuple, Union
|
5 |
import torch
|
6 |
import torch.nn as nn
|
7 |
from einops import rearrange
|
8 |
from packaging import version
|
9 |
from torch import nn
|
10 |
+
from torch.utils.checkpoint import checkpoint
|
11 |
from .norm import LPLayerNorm
|
12 |
+
from .is_torch_version import is_torch_version
|
13 |
+
|
14 |
+
class PastKeyValue(NamedTuple):
|
15 |
+
key: torch.Tensor
|
16 |
+
value: torch.Tensor
|
17 |
+
|
18 |
+
class AttnFnOutput(NamedTuple):
|
19 |
+
attns: torch.Tensor
|
20 |
+
attn_probs: Optional[torch.Tensor]
|
21 |
+
|
22 |
+
class AttnFn(Protocol):
|
23 |
+
def __call__(
|
24 |
+
self,
|
25 |
+
query: torch.Tensor,
|
26 |
+
key: torch.Tensor,
|
27 |
+
value: torch.Tensor,
|
28 |
+
n_heads: int,
|
29 |
+
softmax_scale: Optional[float] = None,
|
30 |
+
attn_bias: Optional[torch.Tensor] = None,
|
31 |
+
key_padding_mask: Optional[torch.ByteTensor] = None,
|
32 |
+
is_causal = False,
|
33 |
+
dropout_p = 0.0,
|
34 |
+
training = False,
|
35 |
+
needs_weights = False,
|
36 |
+
multiquery = False,
|
37 |
+
) -> AttnFnOutput: ...
|
38 |
+
|
39 |
+
class AttnFnCheckpointed(Protocol):
|
40 |
+
def __call__(
|
41 |
+
self,
|
42 |
+
query: torch.Tensor,
|
43 |
+
key: torch.Tensor,
|
44 |
+
value: torch.Tensor,
|
45 |
+
n_heads: int,
|
46 |
+
softmax_scale: Optional[float],
|
47 |
+
attn_bias: Optional[torch.Tensor],
|
48 |
+
key_padding_mask: Optional[torch.ByteTensor],
|
49 |
+
is_causal: bool,
|
50 |
+
dropout_p: float,
|
51 |
+
training: bool,
|
52 |
+
needs_weights: bool,
|
53 |
+
) -> AttnFnOutput: ...
|
54 |
+
|
55 |
+
class AttnOutput(NamedTuple):
|
56 |
+
projected_context: torch.Tensor
|
57 |
+
attn_weights: Optional[torch.Tensor]
|
58 |
+
past_key_value: Union[PastKeyValue, Tuple, None]
|
59 |
+
|
60 |
+
class Attn(Protocol):
|
61 |
+
def __call__(
|
62 |
+
self,
|
63 |
+
x: torch.Tensor,
|
64 |
+
past_key_value: Union[PastKeyValue, Tuple, None] = None,
|
65 |
+
attn_bias: Optional[torch.Tensor] = None,
|
66 |
+
attention_mask: Optional[torch.ByteTensor] = None,
|
67 |
+
is_causal = True,
|
68 |
+
needs_weights = False,
|
69 |
+
) -> AttnOutput: ...
|
70 |
|
71 |
def _reset_is_causal(num_query_tokens: int, num_key_tokens: int, original_is_causal: bool):
|
72 |
if original_is_causal and num_query_tokens != num_key_tokens:
|
|
|
76 |
return False
|
77 |
return original_is_causal
|
78 |
|
79 |
+
def scaled_multihead_dot_product_attention(
|
80 |
+
query: torch.Tensor,
|
81 |
+
key: torch.Tensor,
|
82 |
+
value: torch.Tensor,
|
83 |
+
n_heads: int,
|
84 |
+
softmax_scale: Optional[float] = None,
|
85 |
+
attn_bias: Optional[torch.Tensor] = None,
|
86 |
+
key_padding_mask: Optional[torch.ByteTensor] = None,
|
87 |
+
is_causal = False,
|
88 |
+
dropout_p = 0.0,
|
89 |
+
training = False,
|
90 |
+
needs_weights = False,
|
91 |
+
multiquery = False,
|
92 |
+
) -> AttnFnOutput:
|
93 |
q = rearrange(query, 'b s (h d) -> b h s d', h=n_heads)
|
94 |
k = rearrange(key, 'b s (h d) -> b h d s', h=1 if multiquery else n_heads)
|
95 |
v = rearrange(value, 'b s (h d) -> b h s d', h=1 if multiquery else n_heads)
|
|
|
105 |
attn_weight = attn_weight + attn_bias
|
106 |
if key_padding_mask is not None:
|
107 |
if attn_bias is not None:
|
108 |
+
warnings.warn('Propagating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unneccessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.')
|
109 |
attn_weight = attn_weight.masked_fill(~key_padding_mask.view((b, 1, 1, s_k)), min_val)
|
110 |
if is_causal:
|
111 |
s = max(s_q, s_k)
|
|
|
121 |
out = attn_weight.matmul(v)
|
122 |
out = rearrange(out, 'b h s d -> b s (h d)')
|
123 |
if needs_weights:
|
124 |
+
return AttnFnOutput(out, attn_weight)
|
125 |
+
return AttnFnOutput(out, None)
|
126 |
|
127 |
def check_valid_inputs(*tensors, valid_dtypes=[torch.float16, torch.bfloat16]):
|
128 |
for tensor in tensors:
|
|
|
131 |
if not tensor.is_cuda:
|
132 |
raise TypeError(f'Inputs must be cuda tensors (tensor.is_cuda={tensor.is_cuda!r}).')
|
133 |
|
134 |
+
def flash_attn_fn(
|
135 |
+
query: torch.Tensor,
|
136 |
+
key: torch.Tensor,
|
137 |
+
value: torch.Tensor,
|
138 |
+
n_heads: int,
|
139 |
+
softmax_scale: Optional[float] = None,
|
140 |
+
attn_bias: Optional[torch.Tensor] = None,
|
141 |
+
key_padding_mask: Optional[torch.ByteTensor] = None,
|
142 |
+
is_causal = False,
|
143 |
+
dropout_p = 0.0,
|
144 |
+
training = False,
|
145 |
+
needs_weights = False,
|
146 |
+
multiquery = False,
|
147 |
+
) -> AttnFnOutput:
|
148 |
try:
|
149 |
from flash_attn import bert_padding, flash_attn_interface
|
150 |
except:
|
|
|
169 |
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
|
170 |
output_unpad = flash_attn_interface.flash_attn_unpadded_func(query_unpad, key_unpad, value_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights)
|
171 |
output = bert_padding.pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size, seqlen)
|
172 |
+
return AttnFnOutput(output, None)
|
173 |
|
174 |
+
def triton_flash_attn_fn(
|
175 |
+
query: torch.Tensor,
|
176 |
+
key: torch.Tensor,
|
177 |
+
value: torch.Tensor,
|
178 |
+
n_heads: int,
|
179 |
+
softmax_scale: Optional[float] = None,
|
180 |
+
attn_bias: Optional[torch.Tensor] = None,
|
181 |
+
key_padding_mask: Optional[torch.ByteTensor] = None,
|
182 |
+
is_causal = False,
|
183 |
+
dropout_p = 0.0,
|
184 |
+
training = False,
|
185 |
+
needs_weights = False,
|
186 |
+
multiquery = False,
|
187 |
+
) -> AttnFnOutput:
|
188 |
try:
|
189 |
from .flash_attn_triton import flash_attn_func
|
190 |
except:
|
|
|
217 |
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
|
218 |
attn_output = flash_attn_func(query, key, value, attn_bias, reset_is_causal, softmax_scale)
|
219 |
output = attn_output.view(*attn_output.shape[:2], -1)
|
220 |
+
return AttnFnOutput(output, None)
|
221 |
|
222 |
+
class MultiheadAttention(nn.Module, Attn):
|
223 |
"""Multi-head self attention.
|
224 |
|
225 |
Using torch or triton attention implemetation enables user to also use
|
226 |
additive bias.
|
227 |
"""
|
228 |
+
gradient_checkpointing = False
|
229 |
+
attn_fn: AttnFn
|
230 |
|
231 |
def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, low_precision_layernorm: bool=False, device: Optional[str]=None):
|
232 |
super().__init__()
|
|
|
260 |
self.out_proj = nn.Linear(self.d_model, self.d_model, device=device)
|
261 |
self.out_proj._is_residual = True
|
262 |
|
263 |
+
def forward(
|
264 |
+
self,
|
265 |
+
x: torch.Tensor,
|
266 |
+
past_key_value: Union[PastKeyValue, Tuple, None] = None,
|
267 |
+
attn_bias: Optional[torch.Tensor] = None,
|
268 |
+
attention_mask: Optional[torch.ByteTensor] = None,
|
269 |
+
is_causal = True,
|
270 |
+
needs_weights = False,
|
271 |
+
) -> AttnOutput:
|
272 |
qkv = self.Wqkv(x)
|
273 |
if self.clip_qkv:
|
274 |
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
|
|
|
282 |
if len(past_key_value) != 0:
|
283 |
key = torch.cat([past_key_value[0], key], dim=1)
|
284 |
value = torch.cat([past_key_value[1], value], dim=1)
|
285 |
+
past_key_value = PastKeyValue(key, value)
|
286 |
if attn_bias is not None:
|
287 |
attn_bias = attn_bias[:, :, -query.size(1):, -key.size(1):]
|
288 |
+
if self.training and self.gradient_checkpointing:
|
289 |
+
ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {}
|
290 |
+
def create_custom_forward(attn_fn: AttnFn) -> AttnFnCheckpointed:
|
291 |
+
def custom_forward(
|
292 |
+
query: torch.Tensor,
|
293 |
+
key: torch.Tensor,
|
294 |
+
value: torch.Tensor,
|
295 |
+
n_heads: int,
|
296 |
+
softmax_scale: Optional[float],
|
297 |
+
attn_bias: Optional[torch.Tensor],
|
298 |
+
key_padding_mask: Optional[torch.ByteTensor],
|
299 |
+
is_causal: bool,
|
300 |
+
dropout_p: float,
|
301 |
+
training: bool,
|
302 |
+
needs_weights: bool,
|
303 |
+
):
|
304 |
+
return attn_fn(
|
305 |
+
query,
|
306 |
+
key,
|
307 |
+
value,
|
308 |
+
n_heads,
|
309 |
+
softmax_scale,
|
310 |
+
attn_bias,
|
311 |
+
key_padding_mask,
|
312 |
+
is_causal,
|
313 |
+
dropout_p,
|
314 |
+
training,
|
315 |
+
needs_weights,
|
316 |
+
False, # multiquery
|
317 |
+
)
|
318 |
+
return custom_forward
|
319 |
+
attn_fn_out: AttnFnOutput = checkpoint(
|
320 |
+
create_custom_forward(self.attn_fn),
|
321 |
+
query,
|
322 |
+
key,
|
323 |
+
value,
|
324 |
+
self.n_heads,
|
325 |
+
self.softmax_scale,
|
326 |
+
attn_bias,
|
327 |
+
key_padding_mask,
|
328 |
+
is_causal,
|
329 |
+
self.attn_dropout_p,
|
330 |
+
self.training,
|
331 |
+
needs_weights,
|
332 |
+
**ckpt_kwargs,
|
333 |
+
)
|
334 |
+
else:
|
335 |
+
attn_fn_out: AttnFnOutput = self.attn_fn(
|
336 |
+
query,
|
337 |
+
key,
|
338 |
+
value,
|
339 |
+
self.n_heads,
|
340 |
+
softmax_scale=self.softmax_scale,
|
341 |
+
attn_bias=attn_bias,
|
342 |
+
key_padding_mask=key_padding_mask,
|
343 |
+
is_causal=is_causal,
|
344 |
+
dropout_p=self.attn_dropout_p,
|
345 |
+
training=self.training,
|
346 |
+
needs_weights=needs_weights,
|
347 |
+
)
|
348 |
+
context, attn_weights = attn_fn_out
|
349 |
+
return AttnOutput(self.out_proj(context), attn_weights, past_key_value)
|
350 |
|
351 |
+
class MultiQueryAttention(nn.Module, Attn):
|
352 |
"""Multi-Query self attention.
|
353 |
|
354 |
Using torch or triton attention implemetation enables user to also use
|
|
|
388 |
self.out_proj = nn.Linear(self.d_model, self.d_model, device=device)
|
389 |
self.out_proj._is_residual = True
|
390 |
|
391 |
+
def forward(
|
392 |
+
self,
|
393 |
+
x: torch.Tensor,
|
394 |
+
past_key_value: Union[PastKeyValue, Tuple, None] = None,
|
395 |
+
attn_bias: Optional[torch.Tensor] = None,
|
396 |
+
attention_mask: Optional[torch.ByteTensor] = None,
|
397 |
+
is_causal = True,
|
398 |
+
needs_weights = False,
|
399 |
+
) -> AttnOutput:
|
400 |
qkv = self.Wqkv(x)
|
401 |
if self.clip_qkv:
|
402 |
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
|
|
|
410 |
if len(past_key_value) != 0:
|
411 |
key = torch.cat([past_key_value[0], key], dim=1)
|
412 |
value = torch.cat([past_key_value[1], value], dim=1)
|
413 |
+
past_key_value = PastKeyValue(key, value)
|
414 |
if attn_bias is not None:
|
415 |
attn_bias = attn_bias[:, :, -query.size(1):, -key.size(1):]
|
416 |
+
if self.training and self.gradient_checkpointing:
|
417 |
+
ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {}
|
418 |
+
def create_custom_forward(attn_fn: AttnFn) -> AttnFnCheckpointed:
|
419 |
+
def custom_forward(
|
420 |
+
query: torch.Tensor,
|
421 |
+
key: torch.Tensor,
|
422 |
+
value: torch.Tensor,
|
423 |
+
n_heads: int,
|
424 |
+
softmax_scale: Optional[float],
|
425 |
+
attn_bias: Optional[torch.Tensor],
|
426 |
+
key_padding_mask: Optional[torch.ByteTensor],
|
427 |
+
is_causal: bool,
|
428 |
+
dropout_p: float,
|
429 |
+
training: bool,
|
430 |
+
needs_weights: bool,
|
431 |
+
):
|
432 |
+
return attn_fn(
|
433 |
+
query,
|
434 |
+
key,
|
435 |
+
value,
|
436 |
+
n_heads,
|
437 |
+
softmax_scale,
|
438 |
+
attn_bias,
|
439 |
+
key_padding_mask,
|
440 |
+
is_causal,
|
441 |
+
dropout_p,
|
442 |
+
training,
|
443 |
+
needs_weights,
|
444 |
+
True, # multiquery
|
445 |
+
)
|
446 |
+
return custom_forward
|
447 |
+
attn_fn_out: AttnFnOutput = checkpoint(
|
448 |
+
create_custom_forward(self.attn_fn),
|
449 |
+
query,
|
450 |
+
key,
|
451 |
+
value,
|
452 |
+
self.n_heads,
|
453 |
+
self.softmax_scale,
|
454 |
+
attn_bias,
|
455 |
+
key_padding_mask,
|
456 |
+
is_causal,
|
457 |
+
self.attn_dropout_p,
|
458 |
+
self.training,
|
459 |
+
needs_weights,
|
460 |
+
**ckpt_kwargs,
|
461 |
+
)
|
462 |
+
else:
|
463 |
+
attn_fn_out: AttnFnOutput = self.attn_fn(
|
464 |
+
query,
|
465 |
+
key,
|
466 |
+
value,
|
467 |
+
self.n_heads,
|
468 |
+
softmax_scale=self.softmax_scale,
|
469 |
+
attn_bias=attn_bias,
|
470 |
+
key_padding_mask=key_padding_mask,
|
471 |
+
is_causal=is_causal,
|
472 |
+
dropout_p=self.attn_dropout_p,
|
473 |
+
training=self.training,
|
474 |
+
needs_weights=needs_weights,
|
475 |
+
)
|
476 |
+
context, attn_weights = attn_fn_out
|
477 |
+
return AttnOutput(self.out_proj(context), attn_weights, past_key_value)
|
478 |
|
479 |
def attn_bias_shape(attn_impl, n_heads, seq_len, alibi, prefix_lm, causal, use_sequence_id):
|
480 |
if attn_impl == 'flash':
|
blocks.py
CHANGED
@@ -1,10 +1,14 @@
|
|
1 |
"""GPT Blocks used for the GPT Model."""
|
2 |
-
from typing import Dict, Optional, Tuple
|
3 |
import torch
|
4 |
import torch.nn as nn
|
5 |
-
from .attention import ATTN_CLASS_REGISTRY
|
6 |
from .norm import NORM_CLASS_REGISTRY
|
7 |
|
|
|
|
|
|
|
|
|
8 |
class MPTMLP(nn.Module):
|
9 |
|
10 |
def __init__(self, d_model: int, expansion_ratio: int, device: Optional[str]=None):
|
@@ -18,6 +22,7 @@ class MPTMLP(nn.Module):
|
|
18 |
return self.down_proj(self.act(self.up_proj(x)))
|
19 |
|
20 |
class MPTBlock(nn.Module):
|
|
|
21 |
|
22 |
def __init__(self, d_model: int, n_heads: int, expansion_ratio: int, attn_config: Dict={'attn_type': 'multihead_attention', 'attn_pdrop': 0.0, 'attn_impl': 'triton', 'qk_ln': False, 'clip_qkv': None, 'softmax_scale': None, 'prefix_lm': False, 'attn_uses_sequence_id': False, 'alibi': False, 'alibi_bias_max': 8}, resid_pdrop: float=0.0, norm_type: str='low_precision_layernorm', device: Optional[str]=None, **kwargs):
|
23 |
del kwargs
|
@@ -31,11 +36,11 @@ class MPTBlock(nn.Module):
|
|
31 |
self.resid_attn_dropout = nn.Dropout(resid_pdrop)
|
32 |
self.resid_ffn_dropout = nn.Dropout(resid_pdrop)
|
33 |
|
34 |
-
def forward(self, x: torch.Tensor, past_key_value:
|
35 |
a = self.norm_1(x)
|
36 |
(b, _, past_key_value) = self.attn(a, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=is_causal)
|
37 |
x = x + self.resid_attn_dropout(b)
|
38 |
m = self.norm_2(x)
|
39 |
n = self.ffn(m)
|
40 |
x = x + self.resid_ffn_dropout(n)
|
41 |
-
return (x, past_key_value)
|
|
|
1 |
"""GPT Blocks used for the GPT Model."""
|
2 |
+
from typing import Dict, Optional, Tuple, NamedTuple, Union
|
3 |
import torch
|
4 |
import torch.nn as nn
|
5 |
+
from .attention import ATTN_CLASS_REGISTRY, Attn, PastKeyValue
|
6 |
from .norm import NORM_CLASS_REGISTRY
|
7 |
|
8 |
+
class MPTBlockOutput(NamedTuple):
|
9 |
+
hidden_states: torch.Tensor
|
10 |
+
past_key_value: Union[PastKeyValue, Tuple, None]
|
11 |
+
|
12 |
class MPTMLP(nn.Module):
|
13 |
|
14 |
def __init__(self, d_model: int, expansion_ratio: int, device: Optional[str]=None):
|
|
|
22 |
return self.down_proj(self.act(self.up_proj(x)))
|
23 |
|
24 |
class MPTBlock(nn.Module):
|
25 |
+
attn: Attn
|
26 |
|
27 |
def __init__(self, d_model: int, n_heads: int, expansion_ratio: int, attn_config: Dict={'attn_type': 'multihead_attention', 'attn_pdrop': 0.0, 'attn_impl': 'triton', 'qk_ln': False, 'clip_qkv': None, 'softmax_scale': None, 'prefix_lm': False, 'attn_uses_sequence_id': False, 'alibi': False, 'alibi_bias_max': 8}, resid_pdrop: float=0.0, norm_type: str='low_precision_layernorm', device: Optional[str]=None, **kwargs):
|
28 |
del kwargs
|
|
|
36 |
self.resid_attn_dropout = nn.Dropout(resid_pdrop)
|
37 |
self.resid_ffn_dropout = nn.Dropout(resid_pdrop)
|
38 |
|
39 |
+
def forward(self, x: torch.Tensor, past_key_value: Union[PastKeyValue, Tuple, None] = None, attn_bias: Optional[torch.Tensor]=None, attention_mask: Optional[torch.ByteTensor]=None, is_causal: bool=True) -> MPTBlockOutput:
|
40 |
a = self.norm_1(x)
|
41 |
(b, _, past_key_value) = self.attn(a, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=is_causal)
|
42 |
x = x + self.resid_attn_dropout(b)
|
43 |
m = self.norm_2(x)
|
44 |
n = self.ffn(m)
|
45 |
x = x + self.resid_ffn_dropout(n)
|
46 |
+
return MPTBlockOutput(x, past_key_value)
|
is_torch_version.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import logging
|
3 |
+
import operator as op
|
4 |
+
from packaging import version
|
5 |
+
from packaging.version import Version, parse
|
6 |
+
from typing import Union
|
7 |
+
import importlib.util
|
8 |
+
|
9 |
+
# The package importlib_metadata is in a different place, depending on the python version.
|
10 |
+
if sys.version_info < (3, 8):
|
11 |
+
import importlib_metadata
|
12 |
+
else:
|
13 |
+
import importlib.metadata as importlib_metadata
|
14 |
+
|
15 |
+
STR_OPERATION_TO_FUNC = {">": op.gt, ">=": op.ge, "==": op.eq, "!=": op.ne, "<=": op.le, "<": op.lt}
|
16 |
+
|
17 |
+
logger = logging.getLogger(__name__)
|
18 |
+
|
19 |
+
_torch_available = importlib.util.find_spec("torch") is not None
|
20 |
+
if _torch_available:
|
21 |
+
try:
|
22 |
+
_torch_version = importlib_metadata.version("torch")
|
23 |
+
logger.info(f"PyTorch version {_torch_version} available.")
|
24 |
+
except importlib_metadata.PackageNotFoundError:
|
25 |
+
_torch_available = False
|
26 |
+
|
27 |
+
# This function was copied from: https://github.com/huggingface/accelerate/blob/874c4967d94badd24f893064cc3bef45f57cadf7/src/accelerate/utils/versions.py#L319
|
28 |
+
def compare_versions(library_or_version: Union[str, Version], operation: str, requirement_version: str):
|
29 |
+
"""
|
30 |
+
Args:
|
31 |
+
Compares a library version to some requirement using a given operation.
|
32 |
+
library_or_version (`str` or `packaging.version.Version`):
|
33 |
+
A library name or a version to check.
|
34 |
+
operation (`str`):
|
35 |
+
A string representation of an operator, such as `">"` or `"<="`.
|
36 |
+
requirement_version (`str`):
|
37 |
+
The version to compare the library version against
|
38 |
+
"""
|
39 |
+
if operation not in STR_OPERATION_TO_FUNC.keys():
|
40 |
+
raise ValueError(f"`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys())}, received {operation}")
|
41 |
+
operation = STR_OPERATION_TO_FUNC[operation]
|
42 |
+
if isinstance(library_or_version, str):
|
43 |
+
library_or_version = parse(importlib_metadata.version(library_or_version))
|
44 |
+
return operation(library_or_version, parse(requirement_version))
|
45 |
+
|
46 |
+
# This function was copied from: https://github.com/huggingface/accelerate/blob/874c4967d94badd24f893064cc3bef45f57cadf7/src/accelerate/utils/versions.py#L338
|
47 |
+
def is_torch_version(operation: str, version: str):
|
48 |
+
"""
|
49 |
+
Args:
|
50 |
+
Compares the current PyTorch version to a given reference with an operation.
|
51 |
+
operation (`str`):
|
52 |
+
A string representation of an operator, such as `">"` or `"<="`
|
53 |
+
version (`str`):
|
54 |
+
A string version of PyTorch
|
55 |
+
"""
|
56 |
+
return compare_versions(parse(_torch_version), operation, version)
|
modeling_mpt.py
CHANGED
@@ -4,25 +4,45 @@ Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py
|
|
4 |
"""
|
5 |
import math
|
6 |
import warnings
|
7 |
-
from typing import List, Optional, Tuple, Union
|
8 |
import torch
|
9 |
import torch.nn as nn
|
10 |
import torch.nn.functional as F
|
|
|
11 |
from transformers import PreTrainedModel, PreTrainedTokenizer, PreTrainedTokenizerFast
|
12 |
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
13 |
-
from .
|
14 |
-
from .
|
|
|
15 |
from .norm import NORM_CLASS_REGISTRY
|
16 |
from .configuration_mpt import MPTConfig
|
17 |
from .adapt_tokenizer import AutoTokenizerForMOD, adapt_tokenizer_for_denoising
|
18 |
from .hf_prefixlm_converter import add_bidirectional_mask_if_missing, convert_hf_causal_lm_to_prefix_lm
|
19 |
from .meta_init_context import init_empty_weights
|
20 |
from .param_init_fns import MODEL_INIT_REGISTRY, generic_param_init_fn_
|
|
|
|
|
21 |
Tokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast]
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
class MPTPreTrainedModel(PreTrainedModel):
|
24 |
config_class = MPTConfig
|
25 |
base_model_prefix = 'model'
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
class MPTModel(MPTPreTrainedModel):
|
28 |
|
@@ -64,6 +84,7 @@ class MPTModel(MPTPreTrainedModel):
|
|
64 |
if self.config.init_config['verbose'] > 1:
|
65 |
init_fn_name = self.config.init_config['name']
|
66 |
warnings.warn(f'Using {init_fn_name} initialization.')
|
|
|
67 |
|
68 |
def get_input_embeddings(self):
|
69 |
return self.wte
|
@@ -130,6 +151,12 @@ class MPTModel(MPTPreTrainedModel):
|
|
130 |
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None):
|
131 |
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
132 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
if attention_mask is not None:
|
134 |
attention_mask = attention_mask.bool()
|
135 |
if prefix_mask is not None:
|
@@ -180,7 +207,43 @@ class MPTModel(MPTPreTrainedModel):
|
|
180 |
assert all_hidden_states is not None
|
181 |
all_hidden_states = all_hidden_states + (x,)
|
182 |
past_key_value = past_key_values[b_idx] if past_key_values is not None else None
|
183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
if past_key_values is not None:
|
185 |
past_key_values[b_idx] = past_key_value
|
186 |
x = self.norm_f(x)
|
@@ -231,7 +294,7 @@ class MPTForCausalLM(MPTPreTrainedModel):
|
|
231 |
def get_decoder(self):
|
232 |
return self.transformer
|
233 |
|
234 |
-
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None):
|
235 |
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
236 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
237 |
outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache)
|
|
|
4 |
"""
|
5 |
import math
|
6 |
import warnings
|
7 |
+
from typing import Any, List, Optional, Tuple, Union, Protocol, Dict
|
8 |
import torch
|
9 |
import torch.nn as nn
|
10 |
import torch.nn.functional as F
|
11 |
+
from torch.utils.checkpoint import checkpoint
|
12 |
from transformers import PreTrainedModel, PreTrainedTokenizer, PreTrainedTokenizerFast
|
13 |
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
14 |
+
from transformers.utils import logging
|
15 |
+
from .attention import attn_bias_shape, build_attn_bias, PastKeyValue, MultiheadAttention, MultiQueryAttention
|
16 |
+
from .blocks import MPTBlock, MPTBlockOutput
|
17 |
from .norm import NORM_CLASS_REGISTRY
|
18 |
from .configuration_mpt import MPTConfig
|
19 |
from .adapt_tokenizer import AutoTokenizerForMOD, adapt_tokenizer_for_denoising
|
20 |
from .hf_prefixlm_converter import add_bidirectional_mask_if_missing, convert_hf_causal_lm_to_prefix_lm
|
21 |
from .meta_init_context import init_empty_weights
|
22 |
from .param_init_fns import MODEL_INIT_REGISTRY, generic_param_init_fn_
|
23 |
+
from .is_torch_version import is_torch_version
|
24 |
+
|
25 |
Tokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast]
|
26 |
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
class MPTBlockCheckpointedForward(Protocol):
|
30 |
+
def __call__(
|
31 |
+
x: torch.Tensor,
|
32 |
+
past_key_value: Union[PastKeyValue, Tuple, None],
|
33 |
+
attn_bias: Optional[torch.Tensor],
|
34 |
+
attention_mask: Optional[torch.ByteTensor],
|
35 |
+
is_causal: bool,
|
36 |
+
) -> MPTBlockOutput: ...
|
37 |
+
|
38 |
class MPTPreTrainedModel(PreTrainedModel):
|
39 |
config_class = MPTConfig
|
40 |
base_model_prefix = 'model'
|
41 |
+
_no_split_modules = ['MPTBlock']
|
42 |
+
supports_gradient_checkpointing = True
|
43 |
+
def _set_gradient_checkpointing(self, module: nn.Module, value=False) -> None:
|
44 |
+
if isinstance(module, MPTModel) or isinstance(module, MultiheadAttention) or isinstance(module, MultiQueryAttention):
|
45 |
+
module.gradient_checkpointing = value
|
46 |
|
47 |
class MPTModel(MPTPreTrainedModel):
|
48 |
|
|
|
84 |
if self.config.init_config['verbose'] > 1:
|
85 |
init_fn_name = self.config.init_config['name']
|
86 |
warnings.warn(f'Using {init_fn_name} initialization.')
|
87 |
+
self.gradient_checkpointing = False
|
88 |
|
89 |
def get_input_embeddings(self):
|
90 |
return self.wte
|
|
|
151 |
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None):
|
152 |
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
153 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
154 |
+
if self.gradient_checkpointing and self.training:
|
155 |
+
if use_cache:
|
156 |
+
logger.warning_once(
|
157 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
158 |
+
)
|
159 |
+
use_cache = False
|
160 |
if attention_mask is not None:
|
161 |
attention_mask = attention_mask.bool()
|
162 |
if prefix_mask is not None:
|
|
|
207 |
assert all_hidden_states is not None
|
208 |
all_hidden_states = all_hidden_states + (x,)
|
209 |
past_key_value = past_key_values[b_idx] if past_key_values is not None else None
|
210 |
+
if self.gradient_checkpointing and self.training:
|
211 |
+
ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {}
|
212 |
+
def create_custom_forward(module: MPTBlock) -> MPTBlockCheckpointedForward:
|
213 |
+
def custom_forward(
|
214 |
+
x: torch.Tensor,
|
215 |
+
past_key_value: Union[PastKeyValue, Tuple, None],
|
216 |
+
attn_bias: Optional[torch.Tensor],
|
217 |
+
attention_mask: Optional[torch.ByteTensor],
|
218 |
+
is_causal: bool
|
219 |
+
):
|
220 |
+
return module.forward(
|
221 |
+
x,
|
222 |
+
past_key_value,
|
223 |
+
attn_bias,
|
224 |
+
attention_mask,
|
225 |
+
is_causal,
|
226 |
+
)
|
227 |
+
return custom_forward
|
228 |
+
block_out: MPTBlockOutput = checkpoint(
|
229 |
+
create_custom_forward(block),
|
230 |
+
x,
|
231 |
+
past_key_value,
|
232 |
+
attn_bias,
|
233 |
+
attention_mask,
|
234 |
+
self.is_causal,
|
235 |
+
**ckpt_kwargs,
|
236 |
+
)
|
237 |
+
else:
|
238 |
+
block_out: MPTBlockOutput = block(
|
239 |
+
x,
|
240 |
+
past_key_value=past_key_value,
|
241 |
+
attn_bias=attn_bias,
|
242 |
+
attention_mask=attention_mask,
|
243 |
+
is_causal=self.is_causal,
|
244 |
+
)
|
245 |
+
x, past_key_value = block_out
|
246 |
+
del block_out
|
247 |
if past_key_values is not None:
|
248 |
past_key_values[b_idx] = past_key_value
|
249 |
x = self.norm_f(x)
|
|
|
294 |
def get_decoder(self):
|
295 |
return self.transformer
|
296 |
|
297 |
+
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, *args, **kwargs):
|
298 |
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
299 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
300 |
outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache)
|