--- tags: - spacy - token-classification language: - pt model-index: - name: pt_lg_pipeline results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.8397790055 - name: NER Recall type: recall value: 0.8360836084 - name: NER F Score type: f_score value: 0.8379272326 --- | Feature | Description | | --- | --- | | **Name** | `pt_lg_pipeline` | | **Version** | `0.0.0` | | **spaCy** | `>=3.4.4,<3.5.0` | | **Default Pipeline** | `tok2vec`, `ner` | | **Components** | `tok2vec`, `ner` | | **Vectors** | 500000 keys, 500000 unique vectors (300 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme
View label scheme (6 labels for 1 components) | Component | Labels | | --- | --- | | **`ner`** | `JURISPRUDENCIA`, `LEGISLACAO`, `LOCAL`, `ORGANIZACAO`, `PESSOA`, `TEMPO` |
### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 83.79 | | `ENTS_P` | 83.98 | | `ENTS_R` | 83.61 | | `TOK2VEC_LOSS` | 23620.33 | | `NER_LOSS` | 127975.46 |