File size: 18,844 Bytes
2b6deb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4463ade
2b6deb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4463ade
 
 
2b6deb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4463ade
 
 
2b6deb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4463ade
 
 
2b6deb0
 
 
 
 
 
 
 
4463ade
 
 
 
 
 
 
 
2b6deb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4463ade
2b6deb0
 
4463ade
 
 
 
 
 
 
 
 
2b6deb0
 
4463ade
 
 
2b6deb0
 
 
 
4463ade
 
 
2b6deb0
 
 
 
 
 
 
 
4463ade
 
 
2b6deb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4463ade
 
 
 
 
2b6deb0
4463ade
 
 
 
 
 
2b6deb0
 
 
4463ade
 
 
2b6deb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4463ade
 
 
2b6deb0
 
 
 
 
 
 
 
 
 
 
 
4463ade
 
 
 
 
 
 
 
2b6deb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4463ade
 
 
2b6deb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4463ade
 
 
2b6deb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4463ade
 
 
2b6deb0
 
 
4463ade
 
 
2b6deb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4463ade
 
 
2b6deb0
 
 
 
 
 
 
 
 
 
 
 
 
 
4463ade
 
 
2b6deb0
 
 
4463ade
 
 
2b6deb0
 
 
 
 
4463ade
 
 
 
 
 
2b6deb0
 
 
 
 
4463ade
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
# coding=utf-8
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Optional, Tuple

import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict
from transformers import FLAX_MODEL_MAPPING, FlaxCLIPVisionModel
from transformers.modeling_flax_utils import FlaxPreTrainedModel
from transformers.models.clip.modeling_flax_clip import FlaxCLIPOutput
from transformers.utils import logging

from configuration_hybrid_clip import HybridCLIPConfig

logger = logging.get_logger(__name__)


class FlaxHybridCLIPModule(nn.Module):
    config: HybridCLIPConfig
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        text_config = self.config.text_config
        vision_config = self.config.vision_config

        self.projection_dim = self.config.projection_dim
        self.text_embed_dim = text_config.hidden_size
        self.vision_embed_dim = vision_config.hidden_size

        text_module = FLAX_MODEL_MAPPING[self.config.text_config.__class__].module_class
        vision_module = FLAX_MODEL_MAPPING.get(
            self.config.vision_config.__class__, FlaxCLIPVisionModel
        ).module_class

        self.text_model = text_module(text_config, dtype=self.dtype)
        self.vision_model = vision_module(vision_config, dtype=self.dtype)

        self.visual_projection = nn.Dense(
            self.projection_dim,
            dtype=self.dtype,
            kernel_init=jax.nn.initializers.normal(0.02, dtype=self.dtype),
            use_bias=False,
        )
        self.text_projection = nn.Dense(
            self.projection_dim,
            dtype=self.dtype,
            kernel_init=jax.nn.initializers.normal(0.02, dtype=self.dtype),
            use_bias=False,
        )
        self.logit_scale = self.param("logit_scale", jax.nn.initializers.ones, [])

    def __call__(
        self,
        input_ids=None,
        pixel_values=None,
        attention_mask=None,
        position_ids=None,
        token_type_ids=None,
        deterministic: bool = True,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        return_dict = (
            return_dict if return_dict is not None else self.config.return_dict
        )

        vision_outputs = self.vision_model(
            pixel_values=pixel_values,
            deterministic=deterministic,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        text_outputs = self.text_model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            deterministic=deterministic,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        image_embeds = vision_outputs[1]
        image_embeds = self.visual_projection(image_embeds)

        text_embeds = text_outputs[1]
        text_embeds = self.text_projection(text_embeds)

        # normalized features
        image_embeds = image_embeds / jnp.linalg.norm(
            image_embeds, axis=-1, keepdims=True
        )
        text_embeds = text_embeds / jnp.linalg.norm(text_embeds, axis=-1, keepdims=True)

        # cosine similarity as logits
        logit_scale = jnp.exp(self.logit_scale)
        logits_per_text = jnp.matmul(text_embeds, image_embeds.T) * logit_scale
        logits_per_image = logits_per_text.T

        if not return_dict:
            return (
                logits_per_image,
                logits_per_text,
                text_embeds,
                image_embeds,
                text_outputs,
                vision_outputs,
            )

        return FlaxCLIPOutput(
            logits_per_image=logits_per_image,
            logits_per_text=logits_per_text,
            text_embeds=text_embeds,
            image_embeds=image_embeds,
            text_model_output=text_outputs,
            vision_model_output=vision_outputs,
        )


class FlaxHybridCLIP(FlaxPreTrainedModel):
    config_class = HybridCLIPConfig
    module_class = FlaxHybridCLIPModule

    def __init__(
        self,
        config: HybridCLIPConfig,
        input_shape: Optional[Tuple] = None,
        seed: int = 0,
        dtype: jnp.dtype = jnp.float32,
        **kwargs,
    ):
        if input_shape is None:
            input_shape = (
                (1, 1),
                (
                    1,
                    config.vision_config.image_size,
                    config.vision_config.image_size,
                    3,
                ),
            )

        module = self.module_class(config=config, dtype=dtype, **kwargs)
        super().__init__(
            config, module, input_shape=input_shape, seed=seed, dtype=dtype
        )

    def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple) -> FrozenDict:
        # init input tensor
        input_ids = jnp.zeros(input_shape[0], dtype="i4")
        position_ids = jnp.broadcast_to(
            jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape[0]
        )
        token_type_ids = jnp.ones_like(input_ids)
        attention_mask = jnp.ones_like(input_ids)

        pixel_values = jax.random.normal(rng, input_shape[1])

        params_rng, dropout_rng = jax.random.split(rng)
        rngs = {"params": params_rng, "dropout": dropout_rng}

        return self.module.init(
            rngs, input_ids, pixel_values, attention_mask, position_ids, token_type_ids
        )["params"]

    def __call__(
        self,
        input_ids,
        pixel_values,
        attention_mask=None,
        position_ids=None,
        token_type_ids=None,
        params: dict = None,
        dropout_rng: jax.random.PRNGKey = None,
        train: bool = False,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ):
        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        return_dict = (
            return_dict if return_dict is not None else self.config.return_dict
        )

        if position_ids is None:
            position_ids = jnp.broadcast_to(
                jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape
            )

        if token_type_ids is None:
            token_type_ids = jnp.zeros_like(input_ids)

        if attention_mask is None:
            attention_mask = jnp.ones_like(input_ids)

        # Handle any PRNG if needed
        rngs = {}
        if dropout_rng is not None:
            rngs["dropout"] = dropout_rng

        return self.module.apply(
            {"params": params or self.params},
            jnp.array(input_ids, dtype="i4"),
            jnp.array(pixel_values, dtype=jnp.float32),
            jnp.array(attention_mask, dtype="i4"),
            jnp.array(position_ids, dtype="i4"),
            jnp.array(token_type_ids, dtype="i4"),
            not train,
            output_attentions,
            output_hidden_states,
            return_dict,
            rngs=rngs,
        )

    def get_text_features(
        self,
        input_ids,
        attention_mask=None,
        position_ids=None,
        token_type_ids=None,
        dropout_rng: jax.random.PRNGKey = None,
        train=False,
    ):
        r"""
        Args:
            input_ids (:obj:`numpy.ndarray` of shape :obj:`(batch_size, sequence_length)`):
                Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
                provide it.
                Indices can be obtained using :class:`~transformers.PreTrainedTokenizer`. See
                :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__`
                for details.
                `What are input IDs? <../glossary.html#input-ids>`__
        Returns:
            text_features (:obj:`jax_xla.DeviceArray` of shape :obj:`(batch_size, output_dim`): The text embeddings
            obtained by applying the projection layer to the pooled output of text model.
        """
        if position_ids is None:
            position_ids = jnp.broadcast_to(
                jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape
            )

        if token_type_ids is None:
            token_type_ids = jnp.zeros_like(input_ids)

        if attention_mask is None:
            attention_mask = jnp.ones_like(input_ids)

        # Handle any PRNG if needed
        rngs = {}
        if dropout_rng is not None:
            rngs["dropout"] = dropout_rng

        def _get_features(
            module,
            input_ids,
            attention_mask,
            position_ids,
            token_type_ids,
            deterministic,
        ):
            text_outputs = module.text_model(
                input_ids=input_ids,
                attention_mask=attention_mask,
                position_ids=position_ids,
                token_type_ids=token_type_ids,
                deterministic=deterministic,
            )
            pooled_output = text_outputs[1]
            text_features = module.text_projection(pooled_output)
            return text_features

        return self.module.apply(
            {"params": self.params},
            jnp.array(input_ids, dtype="i4"),
            jnp.array(attention_mask, dtype="i4"),
            jnp.array(position_ids, dtype="i4"),
            jnp.array(token_type_ids, dtype="i4"),
            not train,
            method=_get_features,
            rngs=rngs,
        )

    def get_image_features(
        self, pixel_values, dropout_rng: jax.random.PRNGKey = None, train=False
    ):
        r"""
        Args:
            pixel_values (:obj:`numpy.ndarray` of shape :obj:`(batch_size, num_channels, height, width)`):
                Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained
                using :class:`~transformers.ImageFeatureExtractionMixin`. See
                :meth:`transformers.ImageFeatureExtractionMixin.__call__` for details.
        Returns:
            image_features (:obj:`jax_xla.DeviceArray` of shape :obj:`(batch_size, output_dim`): The image embeddings
            obtained by applying the projection layer to the pooled output of vision model.
        """

        # Handle any PRNG if needed
        rngs = {}
        if dropout_rng is not None:
            rngs["dropout"] = dropout_rng

        def _get_features(module, pixel_values, deterministic):
            vision_outputs = module.vision_model(
                pixel_values=pixel_values, deterministic=deterministic
            )
            pooled_output = vision_outputs[1]  # pooled_output
            image_features = module.visual_projection(pooled_output)
            return image_features

        return self.module.apply(
            {"params": self.params},
            jnp.array(pixel_values, dtype=jnp.float32),
            not train,
            method=_get_features,
            rngs=rngs,
        )

    @classmethod
    def from_text_vision_pretrained(
        cls,
        text_model_name_or_path: str = None,
        vision_model_name_or_path: str = None,
        *model_args,
        **kwargs,
    ) -> FlaxPreTrainedModel:
        """
        Params:
            text_model_name_or_path (:obj: `str`, `optional`):
                Information necessary to initiate the text model. Can be either:
                    - A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co.
                      Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under
                      a user or organization name, like ``dbmdz/bert-base-german-cased``.
                    - A path to a `directory` containing model weights saved using
                      :func:`~transformers.FlaxPreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``.
                    - A path or url to a `PyTorch checkpoint folder` (e.g, ``./pt_model``). In
                      this case, ``from_pt`` should be set to :obj:`True` and a configuration object should be provided
                      as ``config`` argument. This loading path is slower than converting the PyTorch checkpoint in
                      a Flax model using the provided conversion scripts and loading the Flax model afterwards.
            vision_model_name_or_path (:obj: `str`, `optional`, defaults to `None`):
                Information necessary to initiate the vision model. Can be either:
                    - A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co.
                      Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under
                      a user or organization name, like ``dbmdz/bert-base-german-cased``.
                    - A path to a `directory` containing model weights saved using
                      :func:`~transformers.FlaxPreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``.
                    - A path or url to a `PyTorch checkpoint folder` (e.g, ``./pt_model``). In
                      this case, ``from_pt`` should be set to :obj:`True` and a configuration object should be provided
                      as ``config`` argument. This loading path is slower than converting the PyTorch checkpoint in
                      a Flax model using the provided conversion scripts and loading the Flax model afterwards.
            model_args (remaining positional arguments, `optional`):
                All remaning positional arguments will be passed to the underlying model's ``__init__`` method.
            kwargs (remaining dictionary of keyword arguments, `optional`):
                Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
                :obj:`output_attentions=True`).
                - To update the text configuration, use the prefix `text_` for each configuration parameter.
                - To update the vision configuration, use the prefix `vision_` for each configuration parameter.
                - To update the parent model configuration, do not use a prefix for each configuration parameter.
                Behaves differently depending on whether a :obj:`config` is provided or automatically loaded.
        Example::
            >>> from transformers import FlaxHybridCLIP
            >>> # initialize a model from pretrained BERT and CLIP models. Note that the projection layers will be randomly initialized.
            >>> # If using CLIP's vision model the vision projection layer will be initialized using pre-trained weights
            >>> model = FlaxHybridCLIP.from_text_vision_pretrained('bert-base-uncased', 'openai/clip-vit-base-patch32')
            >>> # saving model after fine-tuning
            >>> model.save_pretrained("./bert-clip")
            >>> # load fine-tuned model
            >>> model = FlaxHybridCLIP.from_pretrained("./bert-clip")
        """

        kwargs_text = {
            argument[len("text_") :]: value
            for argument, value in kwargs.items()
            if argument.startswith("text_")
        }

        kwargs_vision = {
            argument[len("vision_") :]: value
            for argument, value in kwargs.items()
            if argument.startswith("vision_")
        }

        # remove text, vision kwargs from kwargs
        for key in kwargs_text.keys():
            del kwargs["text_" + key]
        for key in kwargs_vision.keys():
            del kwargs["vision_" + key]

        # Load and initialize the text and vision model
        text_model = kwargs_text.pop("model", None)
        if text_model is None:
            assert (
                text_model_name_or_path is not None
            ), "If `model` is not defined as an argument, a `text_model_name_or_path` has to be defined"
            from transformers import FlaxAutoModel

            if "config" not in kwargs_text:
                from transformers import AutoConfig

                text_config = AutoConfig.from_pretrained(text_model_name_or_path)
                kwargs_text["config"] = text_config

            text_model = FlaxAutoModel.from_pretrained(
                text_model_name_or_path, *model_args, **kwargs_text
            )

        vision_model = kwargs_vision.pop("model", None)
        if vision_model is None:
            assert (
                vision_model_name_or_path is not None
            ), "If `model` is not defined as an argument, a `vision_model_name_or_path` has to be defined"
            from transformers import FlaxAutoModel

            if "config" not in kwargs_vision:
                from transformers import AutoConfig

                vision_config = AutoConfig.from_pretrained(vision_model_name_or_path)
                kwargs_vision["config"] = vision_config

            vision_model = FlaxAutoModel.from_pretrained(
                vision_model_name_or_path, *model_args, **kwargs_vision
            )

        # instantiate config with corresponding kwargs
        dtype = kwargs.pop("dtype", jnp.float32)
        config = HybridCLIPConfig.from_text_vision_configs(
            text_model.config, vision_model.config, **kwargs
        )

        # init model
        model = cls(config, *model_args, dtype=dtype, **kwargs)

        if vision_config.model_type == "clip":
            model.params["vision_model"]["vision_model"] = vision_model.params[
                "vision_model"
            ]
            model.params["visual_projection"]["kernel"] = vision_model.params[
                "visual_projection"
            ]["kernel"]
        else:
            model.params["vision_model"] = vision_model.params

        model.params["text_model"] = text_model.params

        return model