pino-bigbird-roberta-base / run_mlm_flax.py
dat
Saving weights and logs at step 1252
f291f93
raw
history blame
37.8 kB
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for masked language modeling (BERT, ALBERT, RoBERTa...) with whole word masking on a
text file or a dataset.
Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
https://huggingface.co/models?filter=masked-lm
"""
import logging
import os
import sys
import time
from dataclasses import dataclass, field
# You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments.
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import numpy as np
from datasets import load_dataset, DatasetDict
from tqdm import tqdm
import flax
import jax
import jax.numpy as jnp
import optax
from flax import jax_utils, traverse_util
from flax.training import train_state
from flax.training.common_utils import get_metrics, onehot, shard
from transformers import (
CONFIG_MAPPING,
FLAX_MODEL_FOR_MASKED_LM_MAPPING,
AutoConfig,
AutoTokenizer,
FlaxAutoModelForMaskedLM,
HfArgumentParser,
PreTrainedTokenizerBase,
TensorType,
TrainingArguments,
is_tensorboard_available,
set_seed,
)
import json
from flax.training import checkpoints
from flax.jax_utils import unreplicate
from flax.training.checkpoints import save_checkpoint, restore_checkpoint
from importlib.util import find_spec
MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_MASKED_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
"""
model_name_or_path: Optional[str] = field(
default=None,
metadata={
"help": "The model checkpoint for weights initialization."
"Don't set if you want to train a model from scratch."
},
)
model_type: Optional[str] = field(
default=None,
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
dtype: Optional[str] = field(
default="float32",
metadata={
"help": "Floating-point format in which the model weights should be initialized and trained. Choose one of `[float32, float16, bfloat16]`."
},
)
save_optimizer: Optional[bool] = field(
default=True,
metadata={"help": "Whether to store full train state including optimizer."},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_ref_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input train ref data file for whole word masking in Chinese."},
)
validation_ref_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
validation_split_percentage: Optional[int] = field(
default=5,
metadata={
"help": "The percentage of the train set used as validation set in case there's no validation split"
},
)
max_seq_length: Optional[int] = field(
default=None,
metadata={
"help": "The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated. Default to the max input length of the model."
},
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
mlm_probability: float = field(
default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
)
pad_to_max_length: bool = field(
default=False,
metadata={
"help": "Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
},
)
line_by_line: bool = field(
default=False,
metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
},
)
@flax.struct.dataclass
class FlaxDataCollatorForLanguageModeling:
"""
Data collator used for language modeling. Inputs are dynamically padded to the maximum length of a batch if they
are not all of the same length.
Args:
tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`):
The tokenizer used for encoding the data.
mlm_probability (:obj:`float`, `optional`, defaults to 0.15):
The probability with which to (randomly) mask tokens in the input.
.. note::
For best performance, this data collator should be used with a dataset having items that are dictionaries or
BatchEncoding, with the :obj:`"special_tokens_mask"` key, as returned by a
:class:`~transformers.PreTrainedTokenizer` or a :class:`~transformers.PreTrainedTokenizerFast` with the
argument :obj:`return_special_tokens_mask=True`.
"""
tokenizer: PreTrainedTokenizerBase
mlm_probability: float = 0.15
def __post_init__(self):
if self.tokenizer.mask_token is None:
raise ValueError(
"This tokenizer does not have a mask token which is necessary for masked language modeling. "
"You should pass `mlm=False` to train on causal language modeling instead."
)
def __call__(self, examples: List[Dict[str, np.ndarray]], pad_to_multiple_of: int) -> Dict[str, np.ndarray]:
# Handle dict or lists with proper padding and conversion to tensor.
batch = self.tokenizer.pad(examples, pad_to_multiple_of=pad_to_multiple_of, return_tensors=TensorType.NUMPY)
# If special token mask has been preprocessed, pop it from the dict.
special_tokens_mask = batch.pop("special_tokens_mask", None)
batch["input_ids"], batch["labels"] = self.mask_tokens(
batch["input_ids"], special_tokens_mask=special_tokens_mask
)
return batch
def mask_tokens(
self, inputs: np.ndarray, special_tokens_mask: Optional[np.ndarray]
) -> Tuple[jnp.ndarray, jnp.ndarray]:
"""
Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
"""
labels = inputs.copy()
# We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`)
probability_matrix = np.full(labels.shape, self.mlm_probability)
special_tokens_mask = special_tokens_mask.astype("bool")
probability_matrix[special_tokens_mask] = 0.0
masked_indices = np.random.binomial(1, probability_matrix).astype("bool")
labels[~masked_indices] = -100 # We only compute loss on masked tokens
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
indices_replaced = np.random.binomial(1, np.full(labels.shape, 0.8)).astype("bool") & masked_indices
inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token)
# 10% of the time, we replace masked input tokens with random word
indices_random = np.random.binomial(1, np.full(labels.shape, 0.5)).astype("bool")
indices_random &= masked_indices & ~indices_replaced
random_words = np.random.randint(self.tokenizer.vocab_size, size=labels.shape, dtype="i4")
inputs[indices_random] = random_words[indices_random]
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
return inputs, labels
def generate_batch_splits(samples_idx: jnp.ndarray, batch_size: int) -> jnp.ndarray:
num_samples = len(samples_idx)
samples_to_remove = num_samples % batch_size
if samples_to_remove != 0:
samples_idx = samples_idx[:-samples_to_remove]
sections_split = num_samples // batch_size
batch_idx = np.split(samples_idx, sections_split)
return batch_idx
def write_train_metric(summary_writer, train_metrics, train_time, step):
summary_writer.scalar("train_time", train_time, step)
train_metrics = get_metrics(train_metrics)
for key, vals in train_metrics.items():
tag = f"train_{key}"
for i, val in enumerate(vals):
summary_writer.scalar(tag, val, step - len(vals) + i + 1)
def write_eval_metric(summary_writer, eval_metrics, step):
for metric_name, value in eval_metrics.items():
summary_writer.scalar(f"eval_{metric_name}", value, step)
def _zeros_tree_like(inp_tree):
return jax.tree_map(jnp.zeros_like, inp_tree)
def fake_update(state):
fake_updates = _zeros_tree_like(state.params)
_, new_inner_opt_state = state.tx.inner_opt.update(fake_updates, state.opt_state.inner_opt_state, state.params)
opt_state = state.opt_state
new_opt_state = optax.MultiStepsState(mini_step=opt_state.mini_step,
gradient_step=opt_state.gradient_step,
inner_opt_state=new_inner_opt_state,
acc_grads=opt_state.acc_grads)
return state.replace(opt_state=new_opt_state)
def reinstantiate_states(opt_state):
new_state = []
for state in opt_state:
cls = getattr(optax, type(state).__name__)
new_state.append(cls(**{k:getattr(state, k) for k in state._fields}))
return new_state
def restore_model_checkpoint(save_dir, state):
logger.info(f"RESTORING CHECKPOINT FROM {save_dir}...")
with open(os.path.join(save_dir, "flax_model.msgpack"), "rb") as f:
params = from_bytes(state.params, f.read())
with open(os.path.join(save_dir, "opt_state.msgpack"), "rb") as f:
opt_state = from_bytes(state.opt_state, f.read())
with open(os.path.join(save_dir, "training_state.json"), "r") as f:
training_state = json.load(f)
step = training_state["step"]
logger.info("checkpoint restored")
# reinstantiate inner opt state to avoid type conflict
if hasattr(opt_state, "inner_opt_state"):
print("restoring state of multisteps optimizer")
inner_opt_state = reinstantiate_states(opt_state.inner_opt_state)
ms_state_dict = {k:getattr(state.opt_state, k) for k in state.opt_state._fields}
ms_state_dict["inner_opt_state"] = inner_opt_state
opt_state = optax.MultiStepsState(**ms_state_dict)
return state.replace(step=step, params=params, opt_state=opt_state)
def save_model_checkpoint(model, save_dir, state, with_opt:bool=True, push_to_hub:bool=False):
"""
If `push_to_hub` is True, will save to `save_dir`. Otherwise will save to `save_dir/ckpt-{step}`.
"""
state = jax_utils.unreplicate(state)
logger.info(f"SAVING CHECKPOINT IN {save_dir}...")
if not push_to_hub:
save_dir = f"{save_dir}/ckpt-{mb_item(state.step)-1}"
model.save_pretrained(
save_dir,
params=state.params,
push_to_hub=push_to_hub,
commit_message=f"Saving weights and logs at step {mb_item(state.step)-1}",
)
if with_opt:
with open(os.path.join(save_dir, "opt_state.msgpack"), "wb") as f:
f.write(to_bytes(state.opt_state))
with open(os.path.join(save_dir, "training_state.json"), "w") as f:
json.dump({"step": state.step.item()}, f)
logger.info("checkpoint saved")
if __name__ == "__main__":
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty."
"Use --overwrite_output_dir to overcome."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
level="NOTSET",
datefmt="[%X]",
)
# Log on each process the small summary:
logger = logging.getLogger(__name__)
# Set the verbosity to info of the Transformers logger (on main process only):
logger.info(f"Training/evaluation parameters {training_args}")
# Set seed before initializing model.
set_seed(training_args.seed)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir)
if "validation" not in datasets.keys():
datasets["validation"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=f"train[:{data_args.validation_split_percentage}%]",
cache_dir=model_args.cache_dir,
)
datasets["train"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=f"train[{data_args.validation_split_percentage}%:]",
cache_dir=model_args.cache_dir,
)
else:
import glob
import random
data_files = []
def add_jsonlines_dir(path, filespec):
global data_files
data_files += glob.glob(f"{path}/{filespec}")
data_files = list(set(data_files))
print(f"Number of files {len(data_files)} after adding {path} glob {filespec}")
add_jsonlines_dir(f"/data/c4_cleaned2", "*.gz")
add_jsonlines_dir(f"/data/nrc_uniq_cleaned_20210223", "*.gz")
add_jsonlines_dir(f"/data/nu_uniq_cleaned_20210225", "*.gz")
random.Random(42).shuffle(data_files)
total = len(data_files)
print(total)
perc = 0.05
val_size = int(perc * total)
train_size = total - val_size
train = data_files[:train_size]
val = data_files[train_size:]
print(f"Got {len(train)} training files and {perc * 100} % {len(val)} validation files")
assert list(set(train) & set(val)) == [], "Train overlaps with test"
load_grouped = True
if not load_grouped:
datasets = load_dataset('json', data_files={'train': train, 'validation': val})
#from datasets import Dataset
#dataset = Dataset.from_file("/home/dat/.cache/huggingface/datasets/json/default-9add402b38836560/0.0.0/f92a4de297ac644ad9781979b79064b0e222b3af766f8ea3bee32390dca23723/json-train.arrow")
#dataset = Dataset.from_file("/home/dat/.cache/huggingface/datasets/json/default-9add402b38836560/0.0.0/f92a4de297ac644ad9781979b79064b0e222b3af766f8ea3bee32390dca23723/json-validation.arrow")
def mb_item(x):
return x.item() if hasattr(x, "item") else x
def save_model_checkpoint(model, save_dir, state, with_opt:bool=True, push_to_hub:bool=False):
"""
If `push_to_hub` is True, will save to `save_dir`. Otherwise will save to `save_dir/ckpt-{step}`.
"""
state = jax_utils.unreplicate(state)
logger.info(f"SAVING CHECKPOINT IN {save_dir}...")
if not push_to_hub:
save_dir = f"{save_dir}/ckpt-{mb_item(state.step)-1}"
model.save_pretrained(
save_dir,
params=state.params,
push_to_hub=push_to_hub,
commit_message=f"Saving weights and logs at step {mb_item(state.step)-1}",
)
if with_opt:
with open(os.path.join(save_dir, "opt_state.msgpack"), "wb") as f:
f.write(to_bytes(state.opt_state))
with open(os.path.join(save_dir, "training_state.json"), "w") as f:
json.dump({"step": state.step.item()}, f)
logger.info("checkpoint saved")
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
if model_args.config_name:
config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir)
elif model_args.model_name_or_path:
config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
else:
config = CONFIG_MAPPING[model_args.model_type]()
logger.warning("You are instantiating a new config instance from scratch.")
if model_args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
)
elif model_args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
)
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
)
# Preprocessing the datasets.
# First we tokenize all the texts.
if load_grouped:
logger.info("Loading tokenized and grouped dataset")
tokenized_datasets = DatasetDict.load_from_disk("/data/tokenized_data")
logger.info("Setting max validation examples to ")
print(f"Number of validation examples {data_args.max_eval_samples}")
tokenized_datasets["train"]= tokenized_datasets["train"].select(range(20000))
if data_args.max_eval_samples is not None:
tokenized_datasets["validation"] = tokenized_datasets["validation"].select(range(data_args.max_eval_samples))
else:
if training_args.do_train:
column_names = datasets["train"].column_names
else:
column_names = datasets["validation"].column_names
text_column_name = "text" if "text" in column_names else column_names[0]
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
if data_args.line_by_line:
# When using line_by_line, we just tokenize each nonempty line.
padding = "max_length" if data_args.pad_to_max_length else False
def tokenize_function(examples):
# Remove empty lines
examples = [line for line in examples if len(line) > 0 and not line.isspace()]
return tokenizer(
examples,
return_special_tokens_mask=True,
padding=padding,
truncation=True,
max_length=max_seq_length,
)
tokenized_datasets = datasets.map(
tokenize_function,
input_columns=[text_column_name],
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
)
else:
# Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
# We use `return_special_tokens_mask=True` because DataCollatorForLanguageModeling (see below) is more
# efficient when it receives the `special_tokens_mask`.
def tokenize_function(examples):
return tokenizer(examples[text_column_name], return_special_tokens_mask=True)
tokenized_datasets = datasets.map(
tokenize_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
)
# Main data processing function that will concatenate all texts from our dataset and generate chunks of
# max_seq_length.
def group_texts(examples):
# Concatenate all texts.
concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
total_length = len(concatenated_examples[list(examples.keys())[0]])
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
# customize this part to your needs.
if total_length >= max_seq_length:
total_length = (total_length // max_seq_length) * max_seq_length
# Split by chunks of max_len.
result = {
k: [t[i : i + max_seq_length] for i in range(0, total_length, max_seq_length)]
for k, t in concatenated_examples.items()
}
return result
# Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a
# remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value
# might be slower to preprocess.
#
# To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
# https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
tokenized_datasets = tokenized_datasets.map(
group_texts,
batched=True,
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
)
#tokenized_datasets.save_to_disk("/data/tokenized_data")
#print ("tokenized_datasets saved to disk")
# Enable tensorboard only on the master node
has_tensorboard = is_tensorboard_available()
if has_tensorboard and jax.process_index() == 0:
try:
from flax.metrics.tensorboard import SummaryWriter
summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir))
except ImportError as ie:
has_tensorboard = False
logger.warning(
f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
)
else:
logger.warning(
"Unable to display metrics through TensorBoard because the package is not installed: "
"Please run pip install tensorboard to enable."
)
has_wandb = find_spec("wandb") is not None
if jax.process_index() == 0 and has_wandb and ("wandb" in training_args.report_to):
try:
import wandb
wandb.init(
entity="wandb",
project="hf-flax-pino-roberta",
sync_tensorboard=True
)
wandb.config.update(training_args)
wandb.config.update(model_args)
wandb.config.update(data_args)
except ImportError as e:
print(e)
has_wandb = False
# Data collator
# This one will take care of randomly masking the tokens.
data_collator = FlaxDataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=data_args.mlm_probability)
# Initialize our training
rng = jax.random.PRNGKey(training_args.seed)
dropout_rngs = jax.random.split(rng, jax.local_device_count())
if model_args.model_name_or_path:
model = FlaxAutoModelForMaskedLM.from_pretrained(
model_args.model_name_or_path, config=config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
)
else:
model = FlaxAutoModelForMaskedLM.from_config(
config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
)
# Store some constant
num_epochs = int(training_args.num_train_epochs)
train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count() * training_args.gradient_accumulation_steps
eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
num_train_steps = len(tokenized_datasets["train"]) // train_batch_size * num_epochs
# Create learning rate schedule
warmup_fn = optax.linear_schedule(
init_value=0.0, end_value=training_args.learning_rate, transition_steps=training_args.warmup_steps
)
decay_fn = optax.linear_schedule(
init_value=training_args.learning_rate,
end_value=0,
transition_steps=num_train_steps - training_args.warmup_steps,
)
linear_decay_lr_schedule_fn = optax.join_schedules(
schedules=[warmup_fn, decay_fn], boundaries=[training_args.warmup_steps]
)
# We use Optax's "masking" functionality to not apply weight decay
# to bias and LayerNorm scale parameters. decay_mask_fn returns a
# mask boolean with the same structure as the parameters.
# The mask is True for parameters that should be decayed.
# Note that this mask is specifically adapted for FlaxBERT-like models.
# For other models, one should correct the layer norm parameter naming
# accordingly.
def decay_mask_fn(params):
flat_params = traverse_util.flatten_dict(params)
flat_mask = {path: (path[-1] != "bias" and path[-2:] != ("LayerNorm", "scale")) for path in flat_params}
return traverse_util.unflatten_dict(flat_mask)
# create adam optimizer
if training_args.adafactor:
# We use the default parameters here to initialize adafactor,
# For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74
optimizer = optax.adafactor(
learning_rate=linear_decay_lr_schedule_fn,
)
else:
from optax import clip_by_global_norm
optimizer = optax.adamw(
learning_rate=linear_decay_lr_schedule_fn,
b1=training_args.adam_beta1,
b2=training_args.adam_beta2,
eps=training_args.adam_epsilon,
weight_decay=training_args.weight_decay,
mask=decay_mask_fn,
)
optimizer = optax.chain(
optax.clip_by_global_norm(1.),
optimizer
)
if training_args.gradient_accumulation_steps > 1:
optimizer = optax.MultiSteps(optimizer, training_args.gradient_accumulation_steps)
grad_accum_steps = training_args.gradient_accumulation_steps
# Setup train state
state = train_state.TrainState.create(apply_fn=model.__call__, params=model.params, tx=optimizer)
if training_args.resume_from_checkpoint:
state = restore_model_checkpoint(training_args.resume_from_checkpoint, state)
resume_step = mb_item(state.step)
if training_args.adafactor:
state = fake_update(state)
else:
resume_step = 0
# Define gradient update step fn
def train_step(state, batch, dropout_rng):
dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)
def loss_fn(params):
labels = batch.pop("labels")
logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
# compute loss, ignore padded input tokens
label_mask = jnp.where(labels > 0, 1.0, 0.0)
loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask
# take average
loss = loss.sum() / label_mask.sum()
return loss
grad_fn = jax.value_and_grad(loss_fn)
loss, grad = grad_fn(state.params)
grad = jax.lax.pmean(grad, "batch")
new_state = state.apply_gradients(grads=grad)
metrics = jax.lax.pmean(
{"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step // grad_accum_steps)}, axis_name="batch"
)
return new_state, metrics, new_dropout_rng
# Create parallel version of the train step
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
# Define eval fn
def eval_step(params, batch):
labels = batch.pop("labels")
logits = model(**batch, params=params, train=False)[0]
# compute loss, ignore padded input tokens
label_mask = jnp.where(labels > 0, 1.0, 0.0)
loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask
# compute accuracy
accuracy = jnp.equal(jnp.argmax(logits, axis=-1), labels) * label_mask
# summarize metrics
metrics = {"loss": loss.sum(), "accuracy": accuracy.sum(), "normalizer": label_mask.sum()}
metrics = jax.lax.psum(metrics, axis_name="batch")
return metrics
p_eval_step = jax.pmap(eval_step, "batch", donate_argnums=(0,))
# Replicate the train state on each device
state = jax_utils.replicate(state)
train_time = 0
steps_per_epoch = len(tokenized_datasets["train"]) // train_batch_size
resume_epoch = resume_step // (steps_per_epoch * grad_accum_steps)
epochs = tqdm(range(num_epochs), desc=f"Epoch ... ({resume_epoch+1}/{num_epochs})", position=0)
logger.info(f"Skipping to epoch {resume_epoch} step {resume_step // grad_accum_steps}")
for epoch in epochs:
# ======================== Training ================================
train_start = time.time()
train_metrics = []
# Create sampling rng
rng, input_rng = jax.random.split(rng)
# Generate an epoch by shuffling sampling indices from the train dataset
num_train_samples = len(tokenized_datasets["train"])
train_samples_idx = jax.random.permutation(input_rng, jnp.arange(num_train_samples))
train_batch_idx = generate_batch_splits(train_samples_idx, train_batch_size // grad_accum_steps)
# Gather the indexes for creating the batch and do a training step
for step, batch_idx in enumerate(tqdm(train_batch_idx, desc="Training...", position=1,initial=resume_step // grad_accum_steps)):
samples = [tokenized_datasets["train"][int(idx)] for idx in batch_idx]
model_inputs = data_collator(samples, pad_to_multiple_of=16)
# Model forward
model_inputs = shard(model_inputs.data)
state, train_metric, dropout_rngs = p_train_step(state, model_inputs, dropout_rngs)
train_metrics.append(train_metric)
cur_step = epoch * (num_train_samples // train_batch_size * grad_accum_steps) + step
if cur_step < resume_step:
continue
if cur_step % training_args.logging_steps * grad_accum_steps == 0 and cur_step > 0:
# Save metrics
train_metric = jax_utils.unreplicate(train_metric)
train_time += time.time() - train_start
if has_tensorboard and jax.process_index() == 0:
write_train_metric(summary_writer, train_metrics, train_time, cur_step)
if has_wandb and jax.process_index() == 0 and ("wandb" in training_args.report_to):
# TODO: add accumulation of metrics
_metrics = {k if k=="learning_rate" else f"train_{k}":mb_item(v.mean()) for k, v in train_metric.items()}
wandb.log({"training_step":cur_step, **_metrics}, commit=True)
epochs.write(
f"Step... ({cur_step} | Loss: {train_metric['loss']}, Learning Rate: {train_metric['learning_rate']})"
)
train_metrics = []
if cur_step % training_args.eval_steps * grad_accum_steps == 0 and cur_step > 0:
# ======================== Evaluating ==============================
num_eval_samples = len(tokenized_datasets["validation"])
eval_samples_idx = jnp.arange(num_eval_samples)
eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size)
eval_metrics = []
for i, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=2)):
samples = [tokenized_datasets["validation"][int(idx)] for idx in batch_idx]
model_inputs = data_collator(samples, pad_to_multiple_of=16)
# Model forward
model_inputs = shard(model_inputs.data)
metrics = p_eval_step(state.params, model_inputs)
eval_metrics.append(metrics)
# normalize eval metrics
eval_metrics = get_metrics(eval_metrics)
eval_metrics = jax.tree_map(jnp.sum, eval_metrics)
eval_normalizer = eval_metrics.pop("normalizer")
eval_metrics = jax.tree_map(lambda x: x / eval_normalizer, eval_metrics)
# Update progress bar
epochs.desc = f"Step... ({cur_step} | Loss: {eval_metrics['loss']}, Acc: {eval_metrics['accuracy']})"
# Save metrics
if has_tensorboard and jax.process_index() == 0:
write_eval_metric(summary_writer, eval_metrics, cur_step)
if has_wandb and jax.process_index() == 0 and ("wandb" in training_args.report_to):
_metrics = {f"eval_{k}":mb_item(v) for k, v in eval_metrics.items()}
wandb.log({"eval_step":cur_step, **_metrics})
if cur_step % training_args.save_steps == 0 * grad_accum_steps and cur_step > 0:
# save checkpoint after each epoch and push checkpoint to the hub
if jax.process_index() == 0:
save_model_checkpoint(model, training_args.output_dir, state, with_opt=model_args.save_optimizer,
push_to_hub=training_args.push_to_hub)
if training_args.save_total_limit is not None:
rotate_checkpoints(training_args.output_dir, training_args.save_total_limit)
if jax.process_index() == 0:
save_model_checkpoint(model, training_args.output_dir, state, with_opt=model_args.save_optimizer, push_to_hub=training_args.push_to_hub)