File size: 1,403 Bytes
fdc4101 d9993eb d33873d fdc4101 e867aeb 446c112 e867aeb d9993eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
MODEL="t5-base-dutch"
MODEL_DIR="${HOME}/${MODEL}"
mkdir -p "${MODEL_DIR}/runs"
# T5 paper lr 0.01 with batch size 128
# We have a batch size of 8 devices * 32 = 256, so lr = 0.01/2
while true; do
# Set the seed to random before each run, so date shuffling per epoch is different each run.
# This kills reproducibility, but is required as long as during training ValueError can be raised.
SEED=$RANDOM
./run_t5_mlm_flax_custom_dataset.py \
--output_dir="${MODEL_DIR}" \
--model_type="t5" \
--config_name="flax-community/${MODEL}" \
--tokenizer_name="${MODEL_DIR}" \
--seed="${SEED}" \
--preprocessing_num_workers="96" \
--do_train --do_eval \
--adafactor \
--max_seq_length="512" \
--per_device_train_batch_size="32" \
--per_device_eval_batch_size="32" \
--learning_rate="5e-3" \
--dtype="bfloat16" \
--overwrite_output_dir \
--num_train_epochs="3" \
--logging_steps="50" \
--save_steps="501" \
--eval_steps="10000000" \
--resume_from_checkpoint="${MODEL_DIR}" \
--warmup_steps="3413"
# \
# --push_to_hub
echo "RESTARTING"
sleep 20
done
#
# \
#git add pytorch_model.bin
#git commit -m "Update pytorch model after training"
#git push origin main
# --gradient_accumulation_steps="2" \
# --resume_from_checkpoint="${MODEL_DIR}/ckpt-18000" \
|