export HF_PROJECT="t5-base-dutch" | |
# Variables for training the tokenizer and creating the config | |
export VOCAB_SIZE="32000" | |
export N_INPUT_SENTENCES="1000000" # Num of sentences to train the tokenizer | |
export DATASET="yhavinga/mc4_nl_cleaned" # Name of the dataset in the Huggingface Hub | |
export DATASET_CONFIG="full" # Config of the dataset in the Huggingface Hub | |
export DATASET_SPLIT="train" # Split to use for training tokenizer and model | |
export TEXT_FIELD="text" # Field containing the text to be used for training | |
export CONFIG_TYPE="t5-base" # Config that our model will use | |
export MODEL_PATH="${HOME}/data/${HF_PROJECT}" # Path to the model, e.g. here inside the mount | |
python run_t5_mlm_flax.py \ | |
--output_dir="${MODEL_PATH}" \ | |
--model_type="t5" \ | |
--config_name="${MODEL_PATH}" \ | |
--tokenizer_name="${MODEL_PATH}" \ | |
--preprocessing_num_workers="96" \ | |
--do_train --do_eval \ | |
--dataset_name="${DATASET}" \ | |
--dataset_config_name="${DATASET_CONFIG}" \ | |
--max_seq_length="512" \ | |
--per_device_train_batch_size="16" \ | |
--per_device_eval_batch_size="16" \ | |
--adafactor \ | |
--learning_rate="0.005" \ | |
--overwrite_output_dir \ | |
--num_train_epochs="1" \ | |
--logging_steps="500" \ | |
--save_steps="80000" \ | |
--eval_steps="2500" \ | |
--weight_decay="0.01" \ | |
--warmup_steps="10000" \ | |
--validation_split_count="15000" \ | |
--push_to_hub | |