MODEL="t5-base-dutch" | |
MODEL_DIR="${HOME}/${MODEL}" | |
mkdir -p "${MODEL_DIR}/runs" | |
# T5 paper lr 0.01 with batch size 128 | |
# We have a batch size of 8 devices * 32 = 256, so lr = 0.01/2 | |
#SEED=9200 | |
# | |
#./run_t5_mlm_flax_custom_dataset.py \ | |
# --output_dir="${MODEL_DIR}" \ | |
# --model_type="t5" \ | |
# --config_name="flax-community/${MODEL}" \ | |
# --tokenizer_name="${MODEL_DIR}" \ | |
# --seed="${SEED}" \ | |
# --preprocessing_num_workers="96" \ | |
# --do_train --do_eval \ | |
# --adafactor \ | |
# --max_seq_length="512" \ | |
# --per_device_train_batch_size="32" \ | |
# --per_device_eval_batch_size="32" \ | |
# --dtype="bfloat16" \ | |
# --learning_rate="5e-3" \ | |
# --overwrite_output_dir \ | |
# --num_train_epochs="3" \ | |
# --logging_steps="50" \ | |
# --save_steps="100" \ | |
# --eval_steps="5000" \ | |
# --warmup_steps="3413" | |
#exit | |
while true; do | |
# Set the seed to random before each run, so date shuffling per epoch is different each run. | |
# This kills reproducibility, but is required as long as during training ValueError can be raised. | |
# SEED=$RANDOM | |
SEED=22384 | |
./run_t5_mlm_flax_custom_dataset.py \ | |
--output_dir="${MODEL_DIR}" \ | |
--model_type="t5" \ | |
--config_name="flax-community/${MODEL}" \ | |
--tokenizer_name="${MODEL_DIR}" \ | |
--seed="${SEED}" \ | |
--preprocessing_num_workers="96" \ | |
--do_train --do_eval \ | |
--adafactor \ | |
--max_seq_length="512" \ | |
--per_device_train_batch_size="16" \ | |
--per_device_eval_batch_size="16" \ | |
--dtype="bfloat16" \ | |
--learning_rate="1e-3" \ | |
--overwrite_output_dir \ | |
--num_train_epochs="1" \ | |
--logging_steps="50" \ | |
--save_steps="500" \ | |
--eval_steps="5000" \ | |
--resume_from_checkpoint="${MODEL_DIR}" \ | |
--warmup_steps="6519" | |
# \ | |
# --push_to_hub | |
echo "RESTARTING" | |
sleep 20 | |
done | |
# | |
# \ | |
#git add pytorch_model.bin | |
#git commit -m "Update pytorch model after training" | |
#git push origin main | |
# --gradient_accumulation_steps="2" \ | |
# --resume_from_checkpoint="${MODEL_DIR}/ckpt-18000" \ | |