t5-base-dutch / run_t5.sh
yhavinga's picture
Saving weights and logs of step 2000
a1d2f2c
raw
history blame
1.01 kB
MODEL="t5-base-dutch"
MODEL_DIR="${HOME}/${MODEL}"
mkdir -p "${MODEL_DIR}/runs"
# T5 paper lr 0.01 with batch size 128
# We have a batch size of 8 devices * 32 = 256, so lr = 0.01/2
./run_t5_mlm_flax_custom_dataset.py \
--output_dir="${MODEL_DIR}" \
--model_type="t5" \
--config_name="flax-community/${MODEL}" \
--tokenizer_name="${MODEL_DIR}" \
--preprocessing_num_workers="96" \
--do_train --do_eval \
--adafactor \
--max_seq_length="512" \
--per_device_train_batch_size="32" \
--per_device_eval_batch_size="32" \
--learning_rate="5e-3" \
--dtype="bfloat16" \
--overwrite_output_dir \
--num_train_epochs="3" \
--logging_steps="50" \
--save_steps="2000" \
--eval_steps="10000000" \
--resume_from_checkpoint="${MODEL_DIR}/ckpt-18000" \
--warmup_steps="3413" \
--push_to_hub
#git add pytorch_model.bin
#git commit -m "Update pytorch model after training"
#git push origin main
# --gradient_accumulation_steps="2" \