Add extra scripts
Browse files- notes/flax_to_pytorch.py +35 -0
- notes/flax_to_tf.py +35 -0
- notes/generation.py +196 -0
notes/flax_to_pytorch.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import jax.numpy as jnp
|
4 |
+
|
5 |
+
from transformers import AutoTokenizer
|
6 |
+
from transformers import FlaxT5ForConditionalGeneration
|
7 |
+
from transformers import T5ForConditionalGeneration
|
8 |
+
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained("../")
|
10 |
+
model_fx = FlaxT5ForConditionalGeneration.from_pretrained("../")
|
11 |
+
model_pt = T5ForConditionalGeneration.from_pretrained("../", from_flax=True)
|
12 |
+
model_pt.save_pretrained("./")
|
13 |
+
|
14 |
+
text = "Hello To You"
|
15 |
+
e_input_ids_fx = tokenizer(text, return_tensors="np", padding=True, max_length=128, truncation=True)
|
16 |
+
d_input_ids_fx = jnp.ones((e_input_ids_fx.input_ids.shape[0], 1), dtype="i4") * model_fx.config.decoder_start_token_id
|
17 |
+
|
18 |
+
e_input_ids_pt = tokenizer(text, return_tensors="pt", padding=True, max_length=128, truncation=True)
|
19 |
+
d_input_ids_pt = np.ones((e_input_ids_pt.input_ids.shape[0], 1), dtype="i4") * model_pt.config.decoder_start_token_id
|
20 |
+
|
21 |
+
|
22 |
+
print(e_input_ids_fx)
|
23 |
+
print(d_input_ids_fx)
|
24 |
+
|
25 |
+
print()
|
26 |
+
|
27 |
+
encoder_pt = model_fx.encode(**e_input_ids_pt)
|
28 |
+
decoder_pt = model_fx.decode(d_input_ids_pt, encoder_pt)
|
29 |
+
logits_pt = decoder_pt.logits
|
30 |
+
print(logits_pt)
|
31 |
+
|
32 |
+
encoder_fx = model_fx.encode(**e_input_ids_fx)
|
33 |
+
decoder_fx = model_fx.decode(d_input_ids_fx, encoder_fx)
|
34 |
+
logits_fx = decoder_fx.logits
|
35 |
+
print(logits_fx)
|
notes/flax_to_tf.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import jax.numpy as jnp
|
4 |
+
|
5 |
+
from transformers import AutoTokenizer
|
6 |
+
from transformers import FlaxT5ForConditionalGeneration
|
7 |
+
from transformers import TFT5ForConditionalGeneration
|
8 |
+
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained("../")
|
10 |
+
model_fx = FlaxT5ForConditionalGeneration.from_pretrained("../")
|
11 |
+
model_tf = TFT5ForConditionalGeneration.from_pretrained("./", from_pt=True)
|
12 |
+
model_tf.save_pretrained("./")
|
13 |
+
|
14 |
+
text = "Hello To You"
|
15 |
+
e_input_ids_fx = tokenizer(text, return_tensors="np", padding=True, max_length=128, truncation=True)
|
16 |
+
d_input_ids_fx = jnp.ones((e_input_ids_fx.input_ids.shape[0], 1), dtype="i4") * model_fx.config.decoder_start_token_id
|
17 |
+
|
18 |
+
e_input_ids_tf = tokenizer(text, return_tensors="tf", padding=True, max_length=128, truncation=True)
|
19 |
+
d_input_ids_tf = np.ones((e_input_ids_tf.input_ids.shape[0], 1), dtype="i4") * model_tf.config.decoder_start_token_id
|
20 |
+
|
21 |
+
|
22 |
+
print(e_input_ids_fx)
|
23 |
+
print(d_input_ids_fx)
|
24 |
+
|
25 |
+
print()
|
26 |
+
|
27 |
+
encoder_tf = model_fx.encode(**e_input_ids_tf)
|
28 |
+
decoder_tf = model_fx.decode(d_input_ids_tf, encoder_tf)
|
29 |
+
logits_tf = decoder_tf.logits
|
30 |
+
print(logits_tf)
|
31 |
+
|
32 |
+
encoder_fx = model_fx.encode(**e_input_ids_fx)
|
33 |
+
decoder_fx = model_fx.decode(d_input_ids_fx, encoder_fx)
|
34 |
+
logits_fx = decoder_fx.logits
|
35 |
+
print(logits_fx)
|
notes/generation.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
import pandas as pd
|
4 |
+
import random
|
5 |
+
import re
|
6 |
+
import sys
|
7 |
+
import time
|
8 |
+
from dataclasses import dataclass, field
|
9 |
+
from functools import partial
|
10 |
+
from pathlib import Path
|
11 |
+
from typing import Callable, Optional
|
12 |
+
|
13 |
+
import jax
|
14 |
+
import jax.numpy as jnp
|
15 |
+
|
16 |
+
from filelock import FileLock
|
17 |
+
from flax import jax_utils, traverse_util
|
18 |
+
from flax.jax_utils import unreplicate
|
19 |
+
from flax.training import train_state
|
20 |
+
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key
|
21 |
+
|
22 |
+
from transformers import FlaxAutoModelForSeq2SeqLM
|
23 |
+
from transformers import AutoTokenizer
|
24 |
+
|
25 |
+
from datasets import Dataset, load_dataset, load_metric
|
26 |
+
from tqdm import tqdm
|
27 |
+
import pandas as pd
|
28 |
+
|
29 |
+
|
30 |
+
print(jax.devices())
|
31 |
+
|
32 |
+
MODEL_NAME_OR_PATH = "../"
|
33 |
+
|
34 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME_OR_PATH, use_fast=True)
|
35 |
+
model = FlaxAutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME_OR_PATH)
|
36 |
+
|
37 |
+
prefix = "items: "
|
38 |
+
text_column = "inputs"
|
39 |
+
target_column = "targets"
|
40 |
+
max_source_length = 256
|
41 |
+
max_target_length = 1024
|
42 |
+
seed = 42
|
43 |
+
eval_batch_size = 32
|
44 |
+
# generation_kwargs = {
|
45 |
+
# "max_length": 1024,
|
46 |
+
# "min_length": 128,
|
47 |
+
# "no_repeat_ngram_size": 3,
|
48 |
+
# "do_sample": True,
|
49 |
+
# "top_k": 60,
|
50 |
+
# "top_p": 0.95
|
51 |
+
# }
|
52 |
+
generation_kwargs = {
|
53 |
+
"max_length": 1024,
|
54 |
+
"min_length": 128,
|
55 |
+
"no_repeat_ngram_size": 3,
|
56 |
+
"early_stopping": True,
|
57 |
+
"num_beams": 5,
|
58 |
+
"length_penalty": 1.5,
|
59 |
+
}
|
60 |
+
|
61 |
+
special_tokens = tokenizer.all_special_tokens
|
62 |
+
tokens_map = {
|
63 |
+
"<sep>": "--",
|
64 |
+
"<section>": "\n"
|
65 |
+
}
|
66 |
+
def skip_special_tokens(text, special_tokens):
|
67 |
+
for token in special_tokens:
|
68 |
+
text = text.replace(token, '')
|
69 |
+
|
70 |
+
return text
|
71 |
+
|
72 |
+
def target_postprocessing(texts, special_tokens):
|
73 |
+
if not isinstance(texts, list):
|
74 |
+
texts = [texts]
|
75 |
+
|
76 |
+
new_texts = []
|
77 |
+
for text in texts:
|
78 |
+
text = skip_special_tokens(text, special_tokens)
|
79 |
+
|
80 |
+
for k, v in tokens_map.items():
|
81 |
+
text = text.replace(k, v)
|
82 |
+
|
83 |
+
new_texts.append(text)
|
84 |
+
|
85 |
+
return new_texts
|
86 |
+
|
87 |
+
|
88 |
+
predict_dataset = load_dataset("csv", data_files={"test": "/home/m3hrdadfi/code/data/test.csv"}, delimiter="\t")["test"]
|
89 |
+
print(predict_dataset)
|
90 |
+
# predict_dataset = predict_dataset.select(range(10))
|
91 |
+
# print(predict_dataset)
|
92 |
+
column_names = predict_dataset.column_names
|
93 |
+
print(column_names)
|
94 |
+
|
95 |
+
|
96 |
+
# Setting padding="max_length" as we need fixed length inputs for jitted functions
|
97 |
+
def preprocess_function(examples):
|
98 |
+
inputs = examples[text_column]
|
99 |
+
targets = examples[target_column]
|
100 |
+
inputs = [prefix + inp for inp in inputs]
|
101 |
+
model_inputs = tokenizer(
|
102 |
+
inputs,
|
103 |
+
max_length=max_source_length,
|
104 |
+
padding="max_length",
|
105 |
+
truncation=True,
|
106 |
+
return_tensors="np"
|
107 |
+
)
|
108 |
+
|
109 |
+
# Setup the tokenizer for targets
|
110 |
+
with tokenizer.as_target_tokenizer():
|
111 |
+
labels = tokenizer(
|
112 |
+
targets,
|
113 |
+
max_length=max_target_length,
|
114 |
+
padding="max_length",
|
115 |
+
truncation=True,
|
116 |
+
return_tensors="np"
|
117 |
+
)
|
118 |
+
|
119 |
+
model_inputs["labels"] = labels["input_ids"]
|
120 |
+
|
121 |
+
return model_inputs
|
122 |
+
|
123 |
+
predict_dataset = predict_dataset.map(
|
124 |
+
preprocess_function,
|
125 |
+
batched=True,
|
126 |
+
num_proc=None,
|
127 |
+
remove_columns=column_names,
|
128 |
+
desc="Running tokenizer on prediction dataset",
|
129 |
+
)
|
130 |
+
|
131 |
+
def data_loader(rng: jax.random.PRNGKey, dataset: Dataset, batch_size: int, shuffle: bool = False):
|
132 |
+
"""
|
133 |
+
Returns batches of size `batch_size` from truncated `dataset`, sharded over all local devices.
|
134 |
+
Shuffle batches if `shuffle` is `True`.
|
135 |
+
"""
|
136 |
+
steps_per_epoch = len(dataset) // batch_size
|
137 |
+
|
138 |
+
if shuffle:
|
139 |
+
batch_idx = jax.random.permutation(rng, len(dataset))
|
140 |
+
else:
|
141 |
+
batch_idx = jnp.arange(len(dataset))
|
142 |
+
|
143 |
+
batch_idx = batch_idx[: steps_per_epoch * batch_size] # Skip incomplete batch.
|
144 |
+
batch_idx = batch_idx.reshape((steps_per_epoch, batch_size))
|
145 |
+
|
146 |
+
for idx in batch_idx:
|
147 |
+
batch = dataset[idx]
|
148 |
+
batch = {k: jnp.array(v) for k, v in batch.items()}
|
149 |
+
|
150 |
+
batch = shard(batch)
|
151 |
+
|
152 |
+
yield batch
|
153 |
+
|
154 |
+
rng = jax.random.PRNGKey(seed)
|
155 |
+
rng, dropout_rng = jax.random.split(rng)
|
156 |
+
rng, input_rng = jax.random.split(rng)
|
157 |
+
|
158 |
+
def generate_step(batch):
|
159 |
+
output_ids = model.generate(batch["input_ids"], attention_mask=batch["attention_mask"], **generation_kwargs)
|
160 |
+
return output_ids.sequences
|
161 |
+
|
162 |
+
p_generate_step = jax.pmap(generate_step, "batch")
|
163 |
+
|
164 |
+
pred_generations = []
|
165 |
+
pred_labels = []
|
166 |
+
pred_inputs = []
|
167 |
+
pred_loader = data_loader(input_rng, predict_dataset, eval_batch_size)
|
168 |
+
pred_steps = len(predict_dataset) // eval_batch_size
|
169 |
+
|
170 |
+
for _ in tqdm(range(pred_steps), desc="Predicting...", position=2, leave=False):
|
171 |
+
# Model forward
|
172 |
+
batch = next(pred_loader)
|
173 |
+
inputs = batch["input_ids"]
|
174 |
+
labels = batch["labels"]
|
175 |
+
|
176 |
+
generated_ids = p_generate_step(batch)
|
177 |
+
pred_generations.extend(jax.device_get(generated_ids.reshape(-1, generation_kwargs["max_length"])))
|
178 |
+
pred_labels.extend(jax.device_get(labels.reshape(-1, labels.shape[-1])))
|
179 |
+
pred_inputs.extend(jax.device_get(inputs.reshape(-1, inputs.shape[-1])))
|
180 |
+
|
181 |
+
inputs = tokenizer.batch_decode(pred_inputs, skip_special_tokens=True)
|
182 |
+
true_recipe = target_postprocessing(
|
183 |
+
tokenizer.batch_decode(pred_labels, skip_special_tokens=False),
|
184 |
+
special_tokens
|
185 |
+
)
|
186 |
+
generated_recipe = target_postprocessing(
|
187 |
+
tokenizer.batch_decode(pred_generations, skip_special_tokens=False),
|
188 |
+
special_tokens
|
189 |
+
)
|
190 |
+
test_output = {
|
191 |
+
"inputs": inputs,
|
192 |
+
"true_recipe": true_recipe,
|
193 |
+
"generated_recipe": generated_recipe
|
194 |
+
}
|
195 |
+
test_output = pd.DataFrame.from_dict(test_output)
|
196 |
+
test_output.to_csv("./generated_recipes_b.csv", sep="\t", index=False, encoding="utf-8")
|