#!/bin/bash export LC_ALL=C.UTF-8 export LANG=C.UTF-8 export OUTPUT_DIR=/to/our/path export MODEL_NAME_OR_PATH=t5-base export NUM_BEAMS=3 export TRAIN_FILE=/to/../train.csv export VALIDATION_FILE=/to/../dev.csv export TEST_FILE=/to/../test.csv export TEXT_COLUMN=inputs export TARGET_COLUMN=targets export MAX_SOURCE_LENGTH=256 export MAX_TARGET_LENGTH=1024 export SOURCE_PREFIX=ingredients export PER_DEVICE_TRAIN_BATCH_SIZE=8 export PER_DEVICE_EVAL_BATCH_SIZE=8 export GRADIENT_ACCUMULATION_STEPS=2 export NUM_TRAIN_EPOCHS=5.0 export LEARNING_RATE=1e-4 export WARMUP_STEPS=5000 export LOGGING_STEPS=500 export EVAL_STEPS=2500 export SAVE_STEPS=2500 python run_ed_recipe_nlg.py \ --output_dir="$OUTPUT_DIR" \ --train_file="$TRAIN_FILE" \ --validation_file="$VALIDATION_FILE" \ --test_file="$TEST_FILE" \ --text_column="$TEXT_COLUMN" \ --target_column="$TARGET_COLUMN" \ --source_prefix="$SOURCE_PREFIX: " \ --max_source_length="$MAX_SOURCE_LENGTH" \ --max_target_length="$MAX_TARGET_LENGTH" \ --model_name_or_path="$MODEL_NAME_OR_PATH" \ --extra_tokens="" \ --special_tokens=",
" \ --per_device_train_batch_size=$PER_DEVICE_TRAIN_BATCH_SIZE \ --per_device_eval_batch_size=$PER_DEVICE_EVAL_BATCH_SIZE \ --gradient_accumulation_steps=$GRADIENT_ACCUMULATION_STEPS \ --num_train_epochs=$NUM_TRAIN_EPOCHS \ --learning_rate=$LEARNING_RATE \ --warmup_steps=$WARMUP_STEPS \ --logging_step=$LOGGING_STEPS \ --eval_steps=$EVAL_STEPS \ --save_steps=$SAVE_STEPS \ --prediction_debug \ --do_train \ --do_eval \ --overwrite_output_dir \ --predict_with_generate \ --push_to_hub