nreimers
commited on
Commit
·
e018959
1
Parent(s):
34905fb
upload
Browse files- 1_Pooling/config.json +7 -0
- README.md +91 -0
- config.json +26 -0
- config_sentence_transformers.json +7 -0
- merges.txt +0 -0
- modules.json +20 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
- train_script.py +120 -0
- vocab.json +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
---
|
8 |
+
|
9 |
+
# {MODEL_NAME}
|
10 |
+
|
11 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
12 |
+
|
13 |
+
<!--- Describe your model here -->
|
14 |
+
|
15 |
+
## Usage (Sentence-Transformers)
|
16 |
+
|
17 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
18 |
+
|
19 |
+
```
|
20 |
+
pip install -U sentence-transformers
|
21 |
+
```
|
22 |
+
|
23 |
+
Then you can use the model like this:
|
24 |
+
|
25 |
+
```python
|
26 |
+
from sentence_transformers import SentenceTransformer
|
27 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
28 |
+
|
29 |
+
model = SentenceTransformer('{MODEL_NAME}')
|
30 |
+
embeddings = model.encode(sentences)
|
31 |
+
print(embeddings)
|
32 |
+
```
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
## Evaluation Results
|
37 |
+
|
38 |
+
<!--- Describe how your model was evaluated -->
|
39 |
+
|
40 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
41 |
+
|
42 |
+
|
43 |
+
## Training
|
44 |
+
The model was trained with the parameters:
|
45 |
+
|
46 |
+
**DataLoader**:
|
47 |
+
|
48 |
+
`MultiDatasetDataLoader.MultiDatasetDataLoader` of length 5371 with parameters:
|
49 |
+
```
|
50 |
+
{'batch_size': 'unknown'}
|
51 |
+
```
|
52 |
+
|
53 |
+
**Loss**:
|
54 |
+
|
55 |
+
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
|
56 |
+
```
|
57 |
+
{'scale': 20, 'similarity_fct': 'dot_score'}
|
58 |
+
```
|
59 |
+
|
60 |
+
Parameters of the fit()-Method:
|
61 |
+
```
|
62 |
+
{
|
63 |
+
"callback": null,
|
64 |
+
"epochs": 1,
|
65 |
+
"evaluation_steps": 0,
|
66 |
+
"evaluator": "NoneType",
|
67 |
+
"max_grad_norm": 1,
|
68 |
+
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
|
69 |
+
"optimizer_params": {
|
70 |
+
"lr": 2e-05
|
71 |
+
},
|
72 |
+
"scheduler": "warmupconstant",
|
73 |
+
"steps_per_epoch": 10000,
|
74 |
+
"warmup_steps": 500,
|
75 |
+
"weight_decay": 0.01
|
76 |
+
}
|
77 |
+
```
|
78 |
+
|
79 |
+
|
80 |
+
## Full Model Architecture
|
81 |
+
```
|
82 |
+
SentenceTransformer(
|
83 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel
|
84 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
85 |
+
(2): Normalize()
|
86 |
+
)
|
87 |
+
```
|
88 |
+
|
89 |
+
## Citing & Authors
|
90 |
+
|
91 |
+
<!--- Describe where people can find more information -->
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "distilroberta-base",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"gradient_checkpointing": false,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "roberta",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 6,
|
20 |
+
"pad_token_id": 1,
|
21 |
+
"position_embedding_type": "absolute",
|
22 |
+
"transformers_version": "4.6.1",
|
23 |
+
"type_vocab_size": 1,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 50265
|
26 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.0.0",
|
4 |
+
"transformers": "4.6.1",
|
5 |
+
"pytorch": "1.8.1"
|
6 |
+
}
|
7 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eec3c58b3fd1ca767f783848b856c58c38dcaaab8904d267cd55e11387b28b16
|
3 |
+
size 328520407
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 128,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": false}}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>", "add_prefix_space": false, "errors": "replace", "sep_token": "</s>", "cls_token": "<s>", "pad_token": "<pad>", "mask_token": "<mask>", "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "distilroberta-base"}
|
train_script.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from sentence_transformers import models, losses, datasets
|
3 |
+
from sentence_transformers import LoggingHandler, SentenceTransformer, util, InputExample
|
4 |
+
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator
|
5 |
+
import logging
|
6 |
+
from datetime import datetime
|
7 |
+
import sys
|
8 |
+
import os
|
9 |
+
import gzip
|
10 |
+
import csv
|
11 |
+
from MultiDatasetDataLoader import MultiDatasetDataLoader
|
12 |
+
from shutil import copyfile
|
13 |
+
import json
|
14 |
+
import argparse
|
15 |
+
|
16 |
+
#### Just some code to print debug information to stdout
|
17 |
+
logging.basicConfig(format='%(asctime)s - %(message)s',
|
18 |
+
datefmt='%Y-%m-%d %H:%M:%S',
|
19 |
+
level=logging.INFO,
|
20 |
+
handlers=[LoggingHandler()])
|
21 |
+
#### /print debug information to stdout
|
22 |
+
|
23 |
+
|
24 |
+
#model_name = 'distilroberta-base'
|
25 |
+
#batch_size_pairs = 200
|
26 |
+
#batch_size_triplets = 200
|
27 |
+
#steps_per_epoch = 10000
|
28 |
+
|
29 |
+
parser = argparse.ArgumentParser()
|
30 |
+
parser.add_argument('--model', default='nreimers/MiniLM-L6-H384-uncased')
|
31 |
+
parser.add_argument('--steps', type=int, default=2000)
|
32 |
+
parser.add_argument('--batch_size_pairs', type=int, default=256)
|
33 |
+
parser.add_argument('--batch_size_triplets', type=int, default=256)
|
34 |
+
parser.add_argument('--data', nargs='+', default=[])
|
35 |
+
parser.add_argument('--name')
|
36 |
+
args = parser.parse_args()
|
37 |
+
|
38 |
+
|
39 |
+
model_name = args.model #'nreimers/MiniLM-L6-H384-uncased'
|
40 |
+
batch_size_pairs = args.batch_size_pairs #256
|
41 |
+
batch_size_triplets = args.batch_size_triplets #256
|
42 |
+
steps_per_epoch = args.steps #2000
|
43 |
+
|
44 |
+
num_epochs = 1
|
45 |
+
max_seq_length = 128
|
46 |
+
use_amp = True
|
47 |
+
warmup_steps = 500
|
48 |
+
|
49 |
+
#####
|
50 |
+
|
51 |
+
output_path = 'output/training_data_benchmark-{}-norm-{}'.format(model_name.replace("/", "-"), args.name)
|
52 |
+
logging.info("Output: "+output_path)
|
53 |
+
if os.path.exists(output_path):
|
54 |
+
exit()
|
55 |
+
|
56 |
+
|
57 |
+
# Write train script to output path
|
58 |
+
os.makedirs(output_path, exist_ok=True)
|
59 |
+
|
60 |
+
train_script_path = os.path.join(output_path, 'train_script.py')
|
61 |
+
copyfile(__file__, train_script_path)
|
62 |
+
with open(train_script_path, 'a') as fOut:
|
63 |
+
fOut.write("\n\n# Script was called via:\n#python " + " ".join(sys.argv))
|
64 |
+
|
65 |
+
## SentenceTransformer model
|
66 |
+
word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length)
|
67 |
+
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension())
|
68 |
+
norm = models.Normalize()
|
69 |
+
model = SentenceTransformer(modules=[word_embedding_model, pooling_model, norm])
|
70 |
+
|
71 |
+
datasets = []
|
72 |
+
for filepath in args.data:
|
73 |
+
filepath = filepath.strip()
|
74 |
+
dataset = []
|
75 |
+
|
76 |
+
|
77 |
+
with gzip.open(filepath, 'rt', encoding='utf8') as fIn:
|
78 |
+
for line in fIn:
|
79 |
+
data = json.loads(line.strip())
|
80 |
+
|
81 |
+
if not isinstance(data, dict):
|
82 |
+
data = {'guid': None, 'texts': data}
|
83 |
+
|
84 |
+
dataset.append(InputExample(guid=data.get('guid', None), texts=data['texts']))
|
85 |
+
if len(dataset) >= (steps_per_epoch * batch_size_pairs * 2):
|
86 |
+
break
|
87 |
+
|
88 |
+
datasets.append(dataset)
|
89 |
+
logging.info("{}: {}".format(filepath, len(dataset)))
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
train_dataloader = MultiDatasetDataLoader(datasets, batch_size_pairs=batch_size_pairs, batch_size_triplets=batch_size_triplets, random_batch_fraction=0.25)
|
94 |
+
|
95 |
+
|
96 |
+
# Our training loss
|
97 |
+
train_loss = losses.MultipleNegativesRankingLoss(model, scale=20, similarity_fct=util.dot_score)
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
#Read STSbenchmark dataset and use it as development set
|
102 |
+
|
103 |
+
# Configure the training
|
104 |
+
logging.info("Warmup-steps: {}".format(warmup_steps))
|
105 |
+
|
106 |
+
# Train the model
|
107 |
+
model.fit(train_objectives=[(train_dataloader, train_loss)],
|
108 |
+
evaluator=None,
|
109 |
+
epochs=1,
|
110 |
+
warmup_steps=warmup_steps,
|
111 |
+
steps_per_epoch=steps_per_epoch,
|
112 |
+
scheduler='warmupconstant',
|
113 |
+
use_amp=use_amp
|
114 |
+
)
|
115 |
+
|
116 |
+
|
117 |
+
model.save(output_path)
|
118 |
+
|
119 |
+
# Script was called via:
|
120 |
+
#python training_data_benchmark_norm_cos.py --name codesearch-full --model distilroberta-base --steps 10000 --data data/codesearchnet.jsonl.gz
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|