ppo-LunarLander-v2 / config.json
floraxhuang's picture
Upload PPO LunarLander-v2 trained agent
c7a1230
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fed03141fc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fed03142050>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fed031420e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fed03142170>", "_build": "<function ActorCriticPolicy._build at 0x7fed03142200>", "forward": "<function ActorCriticPolicy.forward at 0x7fed03142290>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fed03142320>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fed031423b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fed03142440>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fed031424d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fed03142560>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fed031425f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fed03148fc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688196263268462223, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEBSML5t1Fo+jnAxPisXU77Cv6A8JkXjvQAAAAAAAAAATeqzPVJw0LmTvRC093lJrSpgrrvSj7AzAACAPwAAgD9Ak1g+KsPKPnXFgL0rhVe+kYb4PPPA9zsAAAAAAAAAADa8tb5zqTk/QogMvefbkb6f+Dm+/WhxPQAAAAAAAAAAs0UUvVetqT6LxvM8XIuEvl9HbrxuGy09AAAAAAAAAAAzXMm8Y0poPSpoXjzzhia+BAIHvQReKT0AAAAAAAAAACa8rb1u1cE9jUTJPXTdH77+d607FqKnvAAAAAAAAAAACHeXvohWFz86ZQw+0DJ9vq32I70rnYE8AAAAAAAAAAAzqmg9AEiaP962Qz5t5ai+6DJVPctR+DsAAAAAAAAAAI2rtr0QTps/XD8uvu9kqr6/vvS96/7mvQAAAAAAAAAADVuwPWwUNT9y/Fm8Nfumvoen4zyCcpW8AAAAAAAAAAB6djY+O0a1vECFQTvyuQ26JdclvilCvLoAAIA/AACAP5MUG76Bq989ZWxdPnV1Yb5ZZQ09p1OJPQAAAAAAAAAAM/TBvMMFWrqq5zc53r1bNJMdGTveLVS4AACAPwAAgD9jKFO+1aSMP7M92b7MU6G+h51bvoh7zL0AAAAAAAAAAOasUD7qwW0+Jvt5vtplNr7AsBe9na2vvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCQ0idJ8OWMAWyUTS8BjAF0lEdAlvGT+NtIkXV9lChoBkdAcX4M1jy4F2gHTRIBaAhHQJbyaBg/keZ1fZQoaAZHQHEt3XVbzK9oB01hAWgIR0CW87Sl3yI6dX2UKGgGR0Brw0i4axX5aAdNVgFoCEdAlvQSKFZgX3V9lChoBkdAbFic/dIoVmgHTU4BaAhHQJb1R2ll9Sd1fZQoaAZHQG8k8NhE0BRoB00rAWgIR0CW9oRJVbRndX2UKGgGR0BwHwjOcDr7aAdNkQFoCEdAlvxqsySFG3V9lChoBkdAb8G11GLDRGgHTYMBaAhHQJcA+YKIBR11fZQoaAZHQG6iQJPZZjhoB02FAWgIR0CXAZx3mmtRdX2UKGgGR0BvMitaIN3GaAdNCwJoCEdAlwNMo+fRNXV9lChoBkdAb24XizcAR2gHTVwCaAhHQJcDT5Lytmt1fZQoaAZHQHKceokzGgloB02SAmgIR0CXA5Hxz7uVdX2UKGgGR0BuhcIRh+fAaAdNTQFoCEdAlwW94NZvDXV9lChoBkdAbt9xH5Jsf2gHTbkBaAhHQJcGlSNwR5F1fZQoaAZHQHEmbOiWVu9oB00oA2gIR0CXGeiQ1aW5dX2UKGgGR0BxERsoDxLCaAdNdAFoCEdAlxqVII4VAXV9lChoBkdAcd8+5vtMPGgHTdMBaAhHQJcbGGsV+JB1fZQoaAZHQHBnlUhmoR9oB03nAWgIR0CXHEGnn+yadX2UKGgGR0BwfloJzDGcaAdN1wFoCEdAlxxbiQ1aXHV9lChoBkdAbk5pmmLtNWgHTWgBaAhHQJcdAu+RHPN1fZQoaAZHQHFKfsu3+ddoB02LAWgIR0CXHSHWBjFydX2UKGgGR0BxFFAMUh3aaAdNGAJoCEdAlyEnzDn/1nV9lChoBkdAbCh8QZn+Q2gHTUkBaAhHQJch/jKgZjx1fZQoaAZHQHDRQh4dIXloB01WAWgIR0CXJYo+OfdzdX2UKGgGR0BscpavA44qaAdNmAFoCEdAlyYZD3M6inV9lChoBkdAbXXpztCzC2gHTRkCaAhHQJcpTNdJJ5F1fZQoaAZHQG3W2BSUC7toB03OAWgIR0CXKkCRwIdEdX2UKGgGR0Bw8M/nnuAqaAdNkQFoCEdAlyufqkdmx3V9lChoBkdAcBbFNL127mgHTeoBaAhHQJcr7uE25x11fZQoaAZHQHGeeoLofSxoB01UAWgIR0CXLJEzfrKOdX2UKGgGR0BuvokRjBl+aAdNiAFoCEdAlyySkfs/p3V9lChoBkdAcXkZkkKNQ2gHTQMCaAhHQJcs6kHlfZ51fZQoaAZHQHBLrF4s3AFoB02FAWgIR0CXLozru6VddX2UKGgGR0Bu36cG1QZXaAdNPAFoCEdAlzAfsJIDo3V9lChoBkdAbtGvi97F9GgHTVoCaAhHQJcyos3AEdN1fZQoaAZHQHDG4mb9ZRtoB00+AWgIR0CXNSZx7zCldX2UKGgGR0BuGhPRArxzaAdNJgJoCEdAlzWDyvs7dXV9lChoBkdAaqccvugHvGgHTT4BaAhHQJc10jSofjl1fZQoaAZHQGr0fgzguRNoB01OAWgIR0CXOpQSzw+ddX2UKGgGR0BtUwvL5h0AaAdNVAFoCEdAlz/w8W9DhXV9lChoBkdAbHMi35N47mgHTTwBaAhHQJdA/9xZMcp1fZQoaAZHQHCDE/W1+iJoB02eAWgIR0CXQYa1kUbldX2UKGgGR0BusaKaXrt3aAdNJAFoCEdAl0IAo1DSgHV9lChoBkdAcCiCYkVvdmgHTaABaAhHQJdDWEh7mdR1fZQoaAZHQHI8STQmeDpoB03HAWgIR0CXRoslsxfwdX2UKGgGR0ByLvGrCFbnaAdN2QFoCEdAl0bIWk8A73V9lChoBkdAcW+gy/KyOmgHTdYBaAhHQJdHJ1EE1VJ1fZQoaAZHQHGfe6y0KJFoB00qAWgIR0CXR5k5ZKWcdX2UKGgGR0Byk4G6f8MvaAdNVgNoCEdAl0ftuk1uSHV9lChoBkdAbNm65oXbd2gHTeYCaAhHQJdJYjFAE+x1fZQoaAZHQHC5ku6ErXloB02fAWgIR0CXSkPFvQ4TdX2UKGgGR0BuTMaGYa5xaAdNfwFoCEdAl0soH9m6G3V9lChoBkdAcOuRhc7hemgHTZQBaAhHQJdLteVs1sN1fZQoaAZHQFpyoaUA1eloB03oA2gIR0CXS8GS6lLwdX2UKGgGR0BDwgyuZCv6aAdL82gIR0CXXBiJO32FdX2UKGgGR0Bvmvomois5aAdNXgFoCEdAl1yUO3DvVnV9lChoBkdAbkdfxc3VC2gHTUUBaAhHQJde73Hq/ud1fZQoaAZHQHI6mN3np0RoB01yAWgIR0CXYOLCvX9SdX2UKGgGR0Bxlyro4dZJaAdNlgFoCEdAl2EsXrMTvnV9lChoBkdAcCfyiEg4fmgHTXoBaAhHQJdiAtL+PzZ1fZQoaAZHQHAJaZML4N9oB01PAWgIR0CXYseS0Sh8dX2UKGgGR0BvnZ/I8yN5aAdNWwFoCEdAl2MEqc3ERHV9lChoBkdAcABEcbR4QmgHTVIBaAhHQJdjOTOgQH11fZQoaAZHQG5LWGh24d9oB01MAWgIR0CXY2zNliBodX2UKGgGR0Bv61n9NvfkaAdNIQFoCEdAl2OY8uBczXV9lChoBkdAcM69CNS62GgHTRsBaAhHQJdkGbExZdR1fZQoaAZHQFJfRhttQ9BoB00IAWgIR0CXZEPOY6XCdX2UKGgGR0BxXJWluWKNaAdNZgFoCEdAl2R2FrVOK3V9lChoBkdAcOEeANG3F2gHTTIBaAhHQJdmTJHRTjx1fZQoaAZHQHFnwtvn8sNoB01VAWgIR0CXZxTHsC1adX2UKGgGR0BumZhnanJlaAdNhgFoCEdAl2iobn5i3HV9lChoBkdAcLOwPRRdhWgHTSgBaAhHQJdo33xnWat1fZQoaAZHQHEuzlo11nxoB01+AWgIR0CXaVuez2OAdX2UKGgGR0Btxv+S8rZraAdNQgFoCEdAl2vMN2C/XXV9lChoBkdAU0Z/wy6+WWgHS+JoCEdAl2wROYYzi3V9lChoBkdAbo+17Y02tWgHTS8BaAhHQJdsNqM3qA11fZQoaAZHQG6JKwhW5pdoB00nAWgIR0CXbW/jbSJCdX2UKGgGR0BurQTTOPeYaAdNLQFoCEdAl21wqd6LO3V9lChoBkdAbkoSSvC/GmgHTT4BaAhHQJdtsDV6NVB1fZQoaAZHQHCe8cABDG9oB01pAWgIR0CXbcR9gF5fdX2UKGgGR0Bs9/XRPXTWaAdNPwFoCEdAl27lkpZwGXV9lChoBkdAcEfIZ62OQ2gHTW8BaAhHQJdwOE/Spit1fZQoaAZHQHBl1fAsTWZoB012AWgIR0CXcojkMkQgdX2UKGgGR0Bu7Br+HaexaAdNfgFoCEdAl3Kuc6Nly3V9lChoBkdAcXJAqNIbwWgHTWgBaAhHQJd1D8DSw4d1fZQoaAZHQHBKNeD3/PxoB00wAWgIR0CXdfVGCqZMdX2UKGgGR0BxgSgOBlMAaAdNQwFoCEdAl3dW29cry3V9lChoBkdAbNnafzz3AWgHTR8BaAhHQJd8m1D0Dlp1fZQoaAZHQHHky1/lQuVoB03RAWgIR0CXfPapPykLdX2UKGgGR0Bw0TWhAWzoaAdNKwFoCEdAl33b2Dg62nV9lChoBkdAcI9EHdGiH2gHTT0BaAhHQJd+5cLSeAd1fZQoaAZHQHDrSOFQEZBoB016AWgIR0CXgDuIRAbAdX2UKGgGR0ByLSEEkjX4aAdNQAFoCEdAl4Bzq0MPSXV9lChoBkdAbuf5Z8rqdGgHTZ0BaAhHQJeBXcnE2pB1fZQoaAZHQG9t/hl18stoB007AWgIR0CXgXUFSsKcdX2UKGgGR0Bw5vYkE9t/aAdNpQFoCEdAl4MIXbdrPHV9lChoBkdAcgStxdY4hmgHTUIBaAhHQJeDTEl3Qld1fZQoaAZHQHCZt5yEL6VoB01tAWgIR0CXhM4MF2V3dX2UKGgGR0BxBy7Dl5nlaAdNEgFoCEdAl4Tqujh1knV9lChoBkdAcP3ukUKzA2gHTUoBaAhHQJeFW+cpb2V1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}