File size: 2,367 Bytes
3bd45f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# handler.py
import torch
from transformers import pipeline, AutoProcessor, Blip2ForConditionalGeneration
import os
"""import base64
from io import BytesIO
from PIL import Image"""

# check for GPU
device = 0 if torch.cuda.is_available() else -1

class EndpointHandler():
    def __init__(self, path=""):
        blip2_proc =  AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
        #blip2 = Blip2ForConditionalGeneration.from_pretrained("sharded", device_map="auto", load_in_8bit=True)
        blip2 = Blip2ForConditionalGeneration.from_pretrained(os.path.join(path, "sharded"), device_map="auto", load_in_8bit=True)
        #translator = pipeline("translation",model="Helsinki-NLP/opus-mt-en-de",device=device)

    def __call__(self, data):
        # deserialize incomin request
        """b64_img = data.pop("b64", data)
        lang = data.pop("lang", None)
        decode = data.pop("decode", None)
        
        #prepare image
        im_bytes = base64.b64decode(b64_img)  # im_bytes is a binary image
        im_file = BytesIO(im_bytes)  # convert image to file-like object
        image = Image.open(im_file).convert("RGB")
        output = {}
        inputs = self.blip2_proc(image, return_tensors="pt").to(device, torch.float16)
        #nucleus vs beam sampling
        if decode == None or decode == "beam":
            generated_ids = self.blip2.generate(**inputs, max_new_tokens=20)
            prediction = self.blip2_proc.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
            #english vs german caption
            if  lang != None or lang == "de":
                translation = self.translator(prediction)
                output["beam"] = translation[0]
            else:
                output["beam"] = prediction
        if decode != None or decode == "nucleus":
            generated_ids = self.blip2.generate(**inputs, max_new_tokens=20)
            prediction = self.blip2_proc.batch_decode(generated_ids, skip_special_tokens=True,do_sample=True)[0].strip()
            #english vs german caption
            if  lang != None or lang == "de":
                translation = self.translator(prediction)
                output["nucleus"] = translation[0]
            else:
                output["nucleus"] = prediction
        
        # postprocess the prediction
        return output"""
        return 73