--- library_name: transformers license: gemma base_model: google/gemma-2-2b tags: - axolotl - generated_from_trainer model-index: - name: gemma-2-2b-magpie-gemma2-9b-flash results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: google/gemma-2-2b model_type: Gemma2ForCausalLM tokenizer_type: AutoTokenizer chat_template: gemma load_in_8bit: false load_in_4bit: false strict: false datasets: - path: flydust/Magpie-100k-Gemma2-9B type: sharegpt chat_template: gemma dataset_prepared_path: last_run_prepared val_set_size: 0.001 output_dir: axolotl_out/gemma-2-2b-magpie-gemma2-9b-flash sequence_len: 4096 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true wandb_project: SynDa wandb_entity: wandb_watch: wandb_name: gemma-2-2b-magpie-gemma2-9b-flash wandb_log_model: hub_model_id: flydust/gemma-2-2b-magpie-gemma2-9b-flash gradient_accumulation_steps: 8 micro_batch_size: 1 num_epochs: 2 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 2e-5 train_on_inputs: false group_by_length: false bf16: true fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: # Disable flash attention flash_attention: true # sdp_attention: falses # eager_attention: true warmup_ratio: 0.1 evals_per_epoch: 5 eval_table_size: saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ```

# gemma-2-2b-magpie-gemma2-9b-flash This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6632 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 86 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.0962 | 0.0023 | 1 | 1.1980 | | 0.7173 | 0.2012 | 87 | 0.7592 | | 0.6728 | 0.4023 | 174 | 0.7202 | | 0.6686 | 0.6035 | 261 | 0.6960 | | 0.604 | 0.8046 | 348 | 0.6751 | | 0.4864 | 1.0038 | 435 | 0.6656 | | 0.4762 | 1.2049 | 522 | 0.6694 | | 0.4573 | 1.4061 | 609 | 0.6661 | | 0.468 | 1.6072 | 696 | 0.6629 | | 0.453 | 1.8084 | 783 | 0.6632 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1