an lunar landerv2 init version
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -158.28 +/- 46.85
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e56a4dbf130>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e56a4dbf1c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e56a4dbf250>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e56a4dbf2e0>", "_build": "<function ActorCriticPolicy._build at 0x7e56a4dbf370>", "forward": "<function ActorCriticPolicy.forward at 0x7e56a4dbf400>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e56a4dbf490>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e56a4dbf520>", "_predict": "<function ActorCriticPolicy._predict at 0x7e56a4dbf5b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e56a4dbf640>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e56a4dbf6d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e56a4dbf760>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e56a4d73b80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 212992, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1705936919108622064, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACP3p74hPv28TqeIvr+qLz1bt1k+G2oyvgAAAAAAAAAAwA3DPnYW1z7Nfc87a2ffvp5vwb0RIo2+AAAAAAAAAABNHsq97Nm1uXtxAzqPL9C4J0zWOrcGELkAAIA/AACAP7MQ4D3DfV26K/fMO54FhjXqRDe77Q53NAAAgD8AAIA/ddY5v+L8UL5y5LC9PPsXPfePgz79QM09AACAPwAAgD/7H5K+vaZ9PO6GOj2jREg8HmbTvcV85TwAAAAAAAAAAJaiYL+R4we+HtYQv9CFy76wmCc+QEg+vgAAAAAAAAAAvbThvjUHcj6vJSC9EbEfv4vqSL2IHe49AAAAAAAAAAATqxq/KEXjvDF6Jj1x9h29N4KbPNPqCr4AAAAAAAAAAIDsfT0F2KE/ddTUPiup8b59QLQ61fO9vAAAAAAAAAAAM/cbvNbPFj3q1529YOckv8B60Lz1jOS8AAAAAAAAAACS6xS/nCfbPkvK1b6JBuS+Pwiuvj/yOTwAAAAAAAAAAE32NT1SuvY6VZtUPBvZdD1A3Hs8r9QZPgAAAAAAAIA/CqCDvm5GmD+SPMu+bOKevujLLL7sUrK9AAAAAAAAAADg0jo+9WB5PrS2FT0xXNm+l06bvZoqXbwAAAAAAAAAANAMyb43djm9MolaO8X2Tz28CjS9IFb8uwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0649599999999999, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQELLTcZccEOMAWyUS4KMAXSUR0B7ndimVJL/dX2UKGgGR8BHbh+fAbhnaAdLsWgIR0B7ngakyk9EdX2UKGgGR0AWldGAkLQYaAdLdmgIR0B7oAXCTEBKdX2UKGgGR8BSr3eSB9ThaAdLhWgIR0B7n97HAAQydX2UKGgGR0AmMx6fJ3gUaAdLbmgIR0B7oeNyYG+sdX2UKGgGR0ArfNxlxwQ2aAdLe2gIR0B7o05fdAPedX2UKGgGR8Apn3cHnlnzaAdLnWgIR0B7o4cJdB0IdX2UKGgGR8A4JP2PDHfeaAdLemgIR0B7pAVYZEUkdX2UKGgGR0A9Vi2lVLi/aAdLj2gIR0B7pFekYXO4dX2UKGgGR7/9LlJYkmhNaAdLbmgIR0B7pRkUbkwOdX2UKGgGR8AyuAqNIbwSaAdLiGgIR0B7pss7MgU2dX2UKGgGR0AWcCgbp/wzaAdLaWgIR0B7p0RzzVc2dX2UKGgGR8Ar/bvgFX7taAdLjGgIR0B7qahTOxB3dX2UKGgGR0AXTzXjENvwaAdLhGgIR0B7rCoUBXCCdX2UKGgGR0AGnzz3AVO9aAdL0GgIR0B7raLWI42kdX2UKGgGR0A6uJbt7a7FaAdLf2gIR0B7rcKJEYwZdX2UKGgGR8A4Q+qBEroXaAdLnWgIR0B7rsZR8+ibdX2UKGgGR0A/7lxOtW+5aAdLa2gIR0B7rxqVQhwEdX2UKGgGR8AhRrJr+HafaAdLlWgIR0B7sE24uscRdX2UKGgGR8ArE22G7BfsaAdLdmgIR0B7sWg6EJ0GdX2UKGgGR0AYpcAzYVZcaAdLhmgIR0B7smcSXdCWdX2UKGgGR0Atzfb9If8uaAdLZWgIR0B7sqLm6oVEdX2UKGgGR8BTie+yquKXaAdLmGgIR0B7ssvXbuc+dX2UKGgGR8AJPuAqd6LPaAdLfWgIR0B7+c384xUOdX2UKGgGR8A0jR3eN1hcaAdLmWgIR0B7+hbC79Q5dX2UKGgGR8BAEHNPgvUSaAdLj2gIR0B7+ieQMhHLdX2UKGgGR8A7HxBE8aGYaAdLWWgIR0B7/flEJBw/dX2UKGgGR0A4+IFvAGjcaAdLdmgIR0B7/8JRfnfVdX2UKGgGR8Ajtq+rU9ZBaAdLcmgIR0B8AJC3PRiPdX2UKGgGR0A/r+K0lZ5iaAdLgWgIR0B8AdUQ04zadX2UKGgGR8A1QCMglnh9aAdLb2gIR0B8AqSowVTKdX2UKGgGR8BEjUHpr1ujaAdLrGgIR0B8AxQrMC9zdX2UKGgGR0AqfHqeK8+SaAdLlmgIR0B8Ay2w3YL9dX2UKGgGR0A7tbBGhEjPaAdLcWgIR0B8BjDwYtQLdX2UKGgGR0AUwBDG96C2aAdLhGgIR0B8CeyNXHR1dX2UKGgGR8BCsFgc94eLaAdLiGgIR0B8ClcOby6MdX2UKGgGR0BAdilSCOFQaAdLkWgIR0B8DzVwxWT5dX2UKGgGRz/okc0cfeUIaAdLoWgIR0B8EkUqQRwqdX2UKGgGR0Alsw35vcagaAdLdGgIR0B8FH8n/kvLdX2UKGgGR8AqcUfPomojaAdLiWgIR0B8F1N21UlzdX2UKGgGR0A66ioKlYU4aAdLg2gIR0B8GHc6/7BPdX2UKGgGR8BBI7JW/8EWaAdLoWgIR0B8GMG3WnTBdX2UKGgGR0BH2ZT6zmfXaAdLx2gIR0B8GTWpZOi4dX2UKGgGR8BUH4I0IkZ8aAdL9mgIR0B8G8VUMoc8dX2UKGgGR0AytlLOAy2yaAdLlmgIR0B8HLXjENvwdX2UKGgGR8Ah5AjY7JXAaAdLlWgIR0B8HQDnvDxcdX2UKGgGR8A58IjGDL8raAdLZGgIR0B8IIo2GZeBdX2UKGgGR0A7Um0VrRBvaAdLsGgIR0B8JIEt/WlNdX2UKGgGR0AvZFspG4I9aAdLb2gIR0B8JcL2HtWudX2UKGgGR0AdhhNM495haAdLoWgIR0B8JeUwBYFJdX2UKGgGR8BDtrCN0eU7aAdLTmgIR0B8KWnUDuBudX2UKGgGR8AiLj81n/T9aAdLbWgIR0B8K9/H5rP/dX2UKGgGR8BN+k0iyIHkaAdLiGgIR0B8LPC66J66dX2UKGgGR8Anxyvs7dSEaAdLe2gIR0B8LVN7BwdbdX2UKGgGR0AqjFm4AjptaAdLzGgIR0B8LndcjZ+QdX2UKGgGR0As8q5LAYYSaAdLgWgIR0B8NRRMvh60dX2UKGgGR8AshdGAkLQYaAdLe2gIR0B8OB+mWMS9dX2UKGgGR7/tVsDW9US7aAdLlWgIR0B8OHTMJQchdX2UKGgGR0AhWp7TlT3qaAdLamgIR0B8OeQnx8UmdX2UKGgGR8BEd2NvOyE+aAdLbWgIR0B8PYWIoE0SdX2UKGgGR8BUZ9DhLoOhaAdLomgIR0B8QfO8kD6ndX2UKGgGR8Ahj4yoGY8daAdLemgIR0B8Qqo1k1/EdX2UKGgGR8AwOBDG96C2aAdLjGgIR0B8RI7MgU1ydX2UKGgGR0BXGbR8c+7laAdN6ANoCEdAfEYlIVdonXV9lChoBkfAKNMSTQmeDmgHS5NoCEdAfEbSUC7sfXV9lChoBkdARSSmVJL/TGgHTegDaAhHQHxIxKxs2vV1fZQoaAZHwE3igWac7QtoB0uMaAhHQHxKoB/7SAp1fZQoaAZHQCGNSKm8/UxoB0u9aAhHQHxMyRB/qgR1fZQoaAZHwFLYZs9B8hNoB01KAWgIR0B8T3ho/RmcdX2UKGgGR0A2MZXuE25yaAdLnWgIR0B8UDBnBciXdX2UKGgGR8BkK/fdhy80aAdNDwFoCEdAfFE3Roh6jXV9lChoBkfARnJJTVDrq2gHS7NoCEdAfFG1pTMq0HV9lChoBkfATVQxBVuJlGgHS8hoCEdAfFPdUsFt9HV9lChoBkdARuzDQ7cO9WgHS3xoCEdAfFVkgwGnoHV9lChoBkfAIXDKgZjx1GgHS45oCEdAfFZ/5tWMj3V9lChoBkfAZK/FnZkCm2gHS71oCEdAfFqob4rSVnV9lChoBkfAKNKZtvXK82gHS7toCEdAfFsOtnwocHV9lChoBkc/82TKT0QK8mgHS6VoCEdAfFuvzvqkdnV9lChoBkdABxfLLZBcA2gHS3xoCEdAfFyW7OE/S3V9lChoBke/9uC17Y02tWgHS6JoCEdAfF0U/fO2RnV9lChoBkfAKStb9qDbrWgHS3FoCEdAfF6cVgx8D3V9lChoBkfAQYhq46Oo52gHS41oCEdAfGGTbFjur3V9lChoBkfARTQ2ZRbbDmgHS4poCEdAfGMuRLbpNnV9lChoBkfAQMgqZtvXLGgHS31oCEdAfGSbrTpgTnV9lChoBkdAMDnSWqtHQWgHS2poCEdAfGTX668QI3V9lChoBkfAM1PZyuIRAmgHS5poCEdAfGYZqmCROnV9lChoBkdAIlFzdUKiPGgHS4poCEdAfGgCa7VawHV9lChoBkfAP6rX6InBtWgHS4toCEdAfG4o2n8893V9lChoBkfAONb74zrNW2gHS2FoCEdAfG+L/jsD4nV9lChoBkdAQCU+5e7cwmgHS2RoCEdAfHGmu1WsBHV9lChoBkdAH+I68xsVL2gHS6ZoCEdAfHMBwMpgC3V9lChoBkfANz3rD63y7WgHS7xoCEdAfHriAUcn3XV9lChoBkfAZT424NI9T2gHS/poCEdAfICWkrPMS3V9lChoBkfAJT5flZHNHGgHS55oCEdAfIIOVPepGXV9lChoBkfAVJEbedkJ8mgHS7loCEdAfILIhQm/nHV9lChoBkfAQtd9Brvb5GgHS3loCEdAfIMRFZxJd3V9lChoBkfAIcPjn3cpLGgHS25oCEdAfIc5uqFRHnV9lChoBkfAJUVmjCYTkGgHS55oCEdAfIzLMLWqcXV9lChoBkfANXXWrfcesGgHS6xoCEdAfJLpLmITG3V9lChoBkdAN3J1/2Cd0GgHS3poCEdAfJzj2zv7WXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 52, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d3ae81549ab6e509ef9b78a4e7b451dde0f44a568429fa24f1b881a20338522
|
3 |
+
size 147939
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7e56a4dbf130>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e56a4dbf1c0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e56a4dbf250>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e56a4dbf2e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7e56a4dbf370>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7e56a4dbf400>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7e56a4dbf490>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e56a4dbf520>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7e56a4dbf5b0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e56a4dbf640>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e56a4dbf6d0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7e56a4dbf760>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7e56a4d73b80>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 212992,
|
25 |
+
"_total_timesteps": 200000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1705936919108622064,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACP3p74hPv28TqeIvr+qLz1bt1k+G2oyvgAAAAAAAAAAwA3DPnYW1z7Nfc87a2ffvp5vwb0RIo2+AAAAAAAAAABNHsq97Nm1uXtxAzqPL9C4J0zWOrcGELkAAIA/AACAP7MQ4D3DfV26K/fMO54FhjXqRDe77Q53NAAAgD8AAIA/ddY5v+L8UL5y5LC9PPsXPfePgz79QM09AACAPwAAgD/7H5K+vaZ9PO6GOj2jREg8HmbTvcV85TwAAAAAAAAAAJaiYL+R4we+HtYQv9CFy76wmCc+QEg+vgAAAAAAAAAAvbThvjUHcj6vJSC9EbEfv4vqSL2IHe49AAAAAAAAAAATqxq/KEXjvDF6Jj1x9h29N4KbPNPqCr4AAAAAAAAAAIDsfT0F2KE/ddTUPiup8b59QLQ61fO9vAAAAAAAAAAAM/cbvNbPFj3q1529YOckv8B60Lz1jOS8AAAAAAAAAACS6xS/nCfbPkvK1b6JBuS+Pwiuvj/yOTwAAAAAAAAAAE32NT1SuvY6VZtUPBvZdD1A3Hs8r9QZPgAAAAAAAIA/CqCDvm5GmD+SPMu+bOKevujLLL7sUrK9AAAAAAAAAADg0jo+9WB5PrS2FT0xXNm+l06bvZoqXbwAAAAAAAAAANAMyb43djm9MolaO8X2Tz28CjS9IFb8uwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.0649599999999999,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV5AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQELLTcZccEOMAWyUS4KMAXSUR0B7ndimVJL/dX2UKGgGR8BHbh+fAbhnaAdLsWgIR0B7ngakyk9EdX2UKGgGR0AWldGAkLQYaAdLdmgIR0B7oAXCTEBKdX2UKGgGR8BSr3eSB9ThaAdLhWgIR0B7n97HAAQydX2UKGgGR0AmMx6fJ3gUaAdLbmgIR0B7oeNyYG+sdX2UKGgGR0ArfNxlxwQ2aAdLe2gIR0B7o05fdAPedX2UKGgGR8Apn3cHnlnzaAdLnWgIR0B7o4cJdB0IdX2UKGgGR8A4JP2PDHfeaAdLemgIR0B7pAVYZEUkdX2UKGgGR0A9Vi2lVLi/aAdLj2gIR0B7pFekYXO4dX2UKGgGR7/9LlJYkmhNaAdLbmgIR0B7pRkUbkwOdX2UKGgGR8AyuAqNIbwSaAdLiGgIR0B7pss7MgU2dX2UKGgGR0AWcCgbp/wzaAdLaWgIR0B7p0RzzVc2dX2UKGgGR8Ar/bvgFX7taAdLjGgIR0B7qahTOxB3dX2UKGgGR0AXTzXjENvwaAdLhGgIR0B7rCoUBXCCdX2UKGgGR0AGnzz3AVO9aAdL0GgIR0B7raLWI42kdX2UKGgGR0A6uJbt7a7FaAdLf2gIR0B7rcKJEYwZdX2UKGgGR8A4Q+qBEroXaAdLnWgIR0B7rsZR8+ibdX2UKGgGR0A/7lxOtW+5aAdLa2gIR0B7rxqVQhwEdX2UKGgGR8AhRrJr+HafaAdLlWgIR0B7sE24uscRdX2UKGgGR8ArE22G7BfsaAdLdmgIR0B7sWg6EJ0GdX2UKGgGR0AYpcAzYVZcaAdLhmgIR0B7smcSXdCWdX2UKGgGR0Atzfb9If8uaAdLZWgIR0B7sqLm6oVEdX2UKGgGR8BTie+yquKXaAdLmGgIR0B7ssvXbuc+dX2UKGgGR8AJPuAqd6LPaAdLfWgIR0B7+c384xUOdX2UKGgGR8A0jR3eN1hcaAdLmWgIR0B7+hbC79Q5dX2UKGgGR8BAEHNPgvUSaAdLj2gIR0B7+ieQMhHLdX2UKGgGR8A7HxBE8aGYaAdLWWgIR0B7/flEJBw/dX2UKGgGR0A4+IFvAGjcaAdLdmgIR0B7/8JRfnfVdX2UKGgGR8Ajtq+rU9ZBaAdLcmgIR0B8AJC3PRiPdX2UKGgGR0A/r+K0lZ5iaAdLgWgIR0B8AdUQ04zadX2UKGgGR8A1QCMglnh9aAdLb2gIR0B8AqSowVTKdX2UKGgGR8BEjUHpr1ujaAdLrGgIR0B8AxQrMC9zdX2UKGgGR0AqfHqeK8+SaAdLlmgIR0B8Ay2w3YL9dX2UKGgGR0A7tbBGhEjPaAdLcWgIR0B8BjDwYtQLdX2UKGgGR0AUwBDG96C2aAdLhGgIR0B8CeyNXHR1dX2UKGgGR8BCsFgc94eLaAdLiGgIR0B8ClcOby6MdX2UKGgGR0BAdilSCOFQaAdLkWgIR0B8DzVwxWT5dX2UKGgGRz/okc0cfeUIaAdLoWgIR0B8EkUqQRwqdX2UKGgGR0Alsw35vcagaAdLdGgIR0B8FH8n/kvLdX2UKGgGR8AqcUfPomojaAdLiWgIR0B8F1N21UlzdX2UKGgGR0A66ioKlYU4aAdLg2gIR0B8GHc6/7BPdX2UKGgGR8BBI7JW/8EWaAdLoWgIR0B8GMG3WnTBdX2UKGgGR0BH2ZT6zmfXaAdLx2gIR0B8GTWpZOi4dX2UKGgGR8BUH4I0IkZ8aAdL9mgIR0B8G8VUMoc8dX2UKGgGR0AytlLOAy2yaAdLlmgIR0B8HLXjENvwdX2UKGgGR8Ah5AjY7JXAaAdLlWgIR0B8HQDnvDxcdX2UKGgGR8A58IjGDL8raAdLZGgIR0B8IIo2GZeBdX2UKGgGR0A7Um0VrRBvaAdLsGgIR0B8JIEt/WlNdX2UKGgGR0AvZFspG4I9aAdLb2gIR0B8JcL2HtWudX2UKGgGR0AdhhNM495haAdLoWgIR0B8JeUwBYFJdX2UKGgGR8BDtrCN0eU7aAdLTmgIR0B8KWnUDuBudX2UKGgGR8AiLj81n/T9aAdLbWgIR0B8K9/H5rP/dX2UKGgGR8BN+k0iyIHkaAdLiGgIR0B8LPC66J66dX2UKGgGR8Anxyvs7dSEaAdLe2gIR0B8LVN7BwdbdX2UKGgGR0AqjFm4AjptaAdLzGgIR0B8LndcjZ+QdX2UKGgGR0As8q5LAYYSaAdLgWgIR0B8NRRMvh60dX2UKGgGR8AshdGAkLQYaAdLe2gIR0B8OB+mWMS9dX2UKGgGR7/tVsDW9US7aAdLlWgIR0B8OHTMJQchdX2UKGgGR0AhWp7TlT3qaAdLamgIR0B8OeQnx8UmdX2UKGgGR8BEd2NvOyE+aAdLbWgIR0B8PYWIoE0SdX2UKGgGR8BUZ9DhLoOhaAdLomgIR0B8QfO8kD6ndX2UKGgGR8Ahj4yoGY8daAdLemgIR0B8Qqo1k1/EdX2UKGgGR8AwOBDG96C2aAdLjGgIR0B8RI7MgU1ydX2UKGgGR0BXGbR8c+7laAdN6ANoCEdAfEYlIVdonXV9lChoBkfAKNMSTQmeDmgHS5NoCEdAfEbSUC7sfXV9lChoBkdARSSmVJL/TGgHTegDaAhHQHxIxKxs2vV1fZQoaAZHwE3igWac7QtoB0uMaAhHQHxKoB/7SAp1fZQoaAZHQCGNSKm8/UxoB0u9aAhHQHxMyRB/qgR1fZQoaAZHwFLYZs9B8hNoB01KAWgIR0B8T3ho/RmcdX2UKGgGR0A2MZXuE25yaAdLnWgIR0B8UDBnBciXdX2UKGgGR8BkK/fdhy80aAdNDwFoCEdAfFE3Roh6jXV9lChoBkfARnJJTVDrq2gHS7NoCEdAfFG1pTMq0HV9lChoBkfATVQxBVuJlGgHS8hoCEdAfFPdUsFt9HV9lChoBkdARuzDQ7cO9WgHS3xoCEdAfFVkgwGnoHV9lChoBkfAIXDKgZjx1GgHS45oCEdAfFZ/5tWMj3V9lChoBkfAZK/FnZkCm2gHS71oCEdAfFqob4rSVnV9lChoBkfAKNKZtvXK82gHS7toCEdAfFsOtnwocHV9lChoBkc/82TKT0QK8mgHS6VoCEdAfFuvzvqkdnV9lChoBkdABxfLLZBcA2gHS3xoCEdAfFyW7OE/S3V9lChoBke/9uC17Y02tWgHS6JoCEdAfF0U/fO2RnV9lChoBkfAKStb9qDbrWgHS3FoCEdAfF6cVgx8D3V9lChoBkfAQYhq46Oo52gHS41oCEdAfGGTbFjur3V9lChoBkfARTQ2ZRbbDmgHS4poCEdAfGMuRLbpNnV9lChoBkfAQMgqZtvXLGgHS31oCEdAfGSbrTpgTnV9lChoBkdAMDnSWqtHQWgHS2poCEdAfGTX668QI3V9lChoBkfAM1PZyuIRAmgHS5poCEdAfGYZqmCROnV9lChoBkdAIlFzdUKiPGgHS4poCEdAfGgCa7VawHV9lChoBkfAP6rX6InBtWgHS4toCEdAfG4o2n8893V9lChoBkfAONb74zrNW2gHS2FoCEdAfG+L/jsD4nV9lChoBkdAQCU+5e7cwmgHS2RoCEdAfHGmu1WsBHV9lChoBkdAH+I68xsVL2gHS6ZoCEdAfHMBwMpgC3V9lChoBkfANz3rD63y7WgHS7xoCEdAfHriAUcn3XV9lChoBkfAZT424NI9T2gHS/poCEdAfICWkrPMS3V9lChoBkfAJT5flZHNHGgHS55oCEdAfIIOVPepGXV9lChoBkfAVJEbedkJ8mgHS7loCEdAfILIhQm/nHV9lChoBkfAQtd9Brvb5GgHS3loCEdAfIMRFZxJd3V9lChoBkfAIcPjn3cpLGgHS25oCEdAfIc5uqFRHnV9lChoBkfAJUVmjCYTkGgHS55oCEdAfIzLMLWqcXV9lChoBkfANXXWrfcesGgHS6xoCEdAfJLpLmITG3V9lChoBkdAN3J1/2Cd0GgHS3poCEdAfJzj2zv7WXVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 52,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0dde1bb75e0704f37dc5dfb2a7acb565301df15a5cb313358fb73a6ff7ba196e
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e92cb3b263bf03c189aeaf12b4881a90daf5bf68fbe809e32670035db8eec2a
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (210 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -158.2842933, "std_reward": 46.84601127137925, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-01-22T15:37:29.471563"}
|