File size: 1,896 Bytes
fd458a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: apache-2.0
base_model: OthmaneJ/distil-wav2vec2
tags:
- generated_from_trainer
datasets:
- OthmaneJ/distil-wav2vec2
metrics:
- accuracy
model-index:
- name: distil-wav2vec2-finetuned-giga-speech
  results:
  - task:
      name: Audio Classification
      type: audio-classification
    dataset:
      name: Giga Speech
      type: OthmaneJ/distil-wav2vec2
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.46
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distil-wav2vec2-finetuned-giga-speech

This model is a fine-tuned version of [OthmaneJ/distil-wav2vec2](https://huggingface.co/OthmaneJ/distil-wav2vec2) on the Giga Speech dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6843
- Accuracy: 0.46

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.2474        | 1.0   | 113  | 2.1219          | 0.28     |
| 2.1323        | 2.0   | 226  | 1.9120          | 0.28     |
| 1.8539        | 3.0   | 339  | 1.7446          | 0.42     |
| 1.831         | 4.0   | 452  | 1.6843          | 0.46     |


### Framework versions

- Transformers 4.33.2
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3