--- license: apache-2.0 base_model: OthmaneJ/distil-wav2vec2 tags: - generated_from_trainer datasets: - OthmaneJ/distil-wav2vec2 metrics: - accuracy model-index: - name: distil-wav2vec2-finetuned-giga-speech results: - task: name: Audio Classification type: audio-classification dataset: name: Giga Speech type: OthmaneJ/distil-wav2vec2 metrics: - name: Accuracy type: accuracy value: 0.46 --- # distil-wav2vec2-finetuned-giga-speech This model is a fine-tuned version of [OthmaneJ/distil-wav2vec2](https://huggingface.co/OthmaneJ/distil-wav2vec2) on the Giga Speech dataset. It achieves the following results on the evaluation set: - Loss: 1.6843 - Accuracy: 0.46 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2474 | 1.0 | 113 | 2.1219 | 0.28 | | 2.1323 | 2.0 | 226 | 1.9120 | 0.28 | | 1.8539 | 3.0 | 339 | 1.7446 | 0.42 | | 1.831 | 4.0 | 452 | 1.6843 | 0.46 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3