Increasing training steps, playing with hyperparameters
Browse files- .gitattributes +1 -0
- README.md +28 -0
- a2c-LunarLander-v2.zip +3 -0
- a2c-LunarLander-v2/_stable_baselines3_version +1 -0
- a2c-LunarLander-v2/data +95 -0
- a2c-LunarLander-v2/policy.optimizer.pth +3 -0
- a2c-LunarLander-v2/policy.pth +3 -0
- a2c-LunarLander-v2/pytorch_variables.pth +3 -0
- a2c-LunarLander-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -1467.76 +/- 587.40
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **A2C** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **A2C** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
a2c-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:699cd0ebe7a360460b3aa4faec20f37395796671c6003a14eff52572cc3efae3
|
3 |
+
size 100960
|
a2c-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
a2c-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f709f166f80>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f709f16f050>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f709f16f0e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f709f16f170>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f709f16f200>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f709f16f290>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f709f16f320>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f709f16f3b0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f709f16f440>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f709f16f4d0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f709f16f560>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f709f13e390>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
25 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
26 |
+
"optimizer_kwargs": {
|
27 |
+
"alpha": 0.99,
|
28 |
+
"eps": 1e-05,
|
29 |
+
"weight_decay": 0
|
30 |
+
}
|
31 |
+
},
|
32 |
+
"observation_space": {
|
33 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
34 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
35 |
+
"dtype": "float32",
|
36 |
+
"_shape": [
|
37 |
+
8
|
38 |
+
],
|
39 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
40 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
41 |
+
"bounded_below": "[False False False False False False False False]",
|
42 |
+
"bounded_above": "[False False False False False False False False]",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"action_space": {
|
46 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
47 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
48 |
+
"n": 4,
|
49 |
+
"_shape": [],
|
50 |
+
"dtype": "int64",
|
51 |
+
"_np_random": null
|
52 |
+
},
|
53 |
+
"n_envs": 16,
|
54 |
+
"num_timesteps": 1015808,
|
55 |
+
"_total_timesteps": 1000000,
|
56 |
+
"_num_timesteps_at_start": 0,
|
57 |
+
"seed": null,
|
58 |
+
"action_noise": null,
|
59 |
+
"start_time": 1651770197.7187119,
|
60 |
+
"learning_rate": 0.0007,
|
61 |
+
"tensorboard_log": null,
|
62 |
+
"lr_schedule": {
|
63 |
+
":type:": "<class 'function'>",
|
64 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
65 |
+
},
|
66 |
+
"_last_obs": {
|
67 |
+
":type:": "<class 'numpy.ndarray'>",
|
68 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAK2OlD7+rrc/LvRGPz5aHL4ovF6+GGwxPAAAAAAAAAAAw53UvrLeZD8Odia/BRZAvyjECr4Gvma+AAAAAAAAAACmATy+ejhAP8U4970wC92+YiN7OkZVOb0AAAAAAAAAAFBDvD7065892v1tvzSTWr/WDQ0/eL1ZvgAAAAAAAAAAQp+nvr7XoT/47fq+NyeLvvdSD75sHSG+AAAAAAAAAAB6UKa+YwJ0P733375y8h2/VZnYvV3kU74AAAAAAAAAAM3Qxzw3Uwi9RgaDvtaswb6F0PA82CSzvwAAgD8AAIA/Jm/GvcUgvj9UFxC/QCknPi8tiT0S26o8AAAAAAAAAAAmKhK+DTibP081mL7sJ+K9Qgszvo5xlr4AAAAAAAAAAICykj2QtcQ/GswpPmJfpDxjSz8+S4J3PgAAAAAAAAAAuvB4vkbEYz/98k2/bOALvy6k2z4gxDe+AAAAAAAAAADoZgk/9+zGPm3DWD6B/WS/wNwvP7BpKz4AAAAAAAAAAKoHgD4D5wY/nuGfPoVqVL9T9vU9JYhlPgAAAAAAAAAABsAIvhSLbT86Wpy79I3svtIrSr5XAKE9AAAAAAAAAABa0ow+B4x5PkVb5TwhFTW/2pTAva4/yr0AAAAAAAAAAAahPb66BZc/oiUsvxDuzr7gOUk9nmYSvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
69 |
+
},
|
70 |
+
"_last_episode_starts": {
|
71 |
+
":type:": "<class 'numpy.ndarray'>",
|
72 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
73 |
+
},
|
74 |
+
"_last_original_obs": null,
|
75 |
+
"_episode_num": 0,
|
76 |
+
"use_sde": false,
|
77 |
+
"sde_sample_freq": -1,
|
78 |
+
"_current_progress_remaining": -0.015808000000000044,
|
79 |
+
"ep_info_buffer": {
|
80 |
+
":type:": "<class 'collections.deque'>",
|
81 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdv9YiA7oXcCUhpRSlIwBbJRLvowBdJRHQK14rPrOZ9d1fZQoaAZoCWgPQwinCHB6l0FrwJSGlFKUaBVLj2gWR0CteLiudPLxdX2UKGgGaAloD0MIcOmY84xYX8CUhpRSlGgVS4RoFkdArXi+clPac3V9lChoBmgJaA9DCJOmQdG8g2XAlIaUUpRoFUuVaBZHQK145+MIeHV1fZQoaAZoCWgPQwhYrOEi9/JGwJSGlFKUaBVLc2gWR0CteSSfUWl/dX2UKGgGaAloD0MIaVTgZBtgN8CUhpRSlGgVS2doFkdArXlKy+pOvnV9lChoBmgJaA9DCM4AF2TLck/AlIaUUpRoFUt3aBZHQK15W2MsH0N1fZQoaAZoCWgPQwhFvHX+7WpIwJSGlFKUaBVLd2gWR0CteWVLSNOudX2UKGgGaAloD0MIPiZSms1DOMCUhpRSlGgVS7hoFkdArXmq5Zr57HV9lChoBmgJaA9DCCYd5WA2+nHAlIaUUpRoFUvbaBZHQK15qyprDZV1fZQoaAZoCWgPQwhwB+qUR6BfwJSGlFKUaBVLUWgWR0CtebHAymALdX2UKGgGaAloD0MIlE25wru8O8CUhpRSlGgVS3doFkdArXnNCgK4QXV9lChoBmgJaA9DCHuGcMyyW2vAlIaUUpRoFUt0aBZHQK1522G7Bft1fZQoaAZoCWgPQwj2RUJbznVQwJSGlFKUaBVLfmgWR0Cteeu8K5TZdX2UKGgGaAloD0MIOEiI8gVZSMCUhpRSlGgVS4NoFkdArXoQEbHZK3V9lChoBmgJaA9DCIfcDDdgu2DAlIaUUpRoFUu5aBZHQK16HrOZ9eB1fZQoaAZoCWgPQwikF7X7VTxxwJSGlFKUaBVLwmgWR0Cteh/gzguRdX2UKGgGaAloD0MILGfvjLZHUsCUhpRSlGgVS8ZoFkdArXpb+ee4C3V9lChoBmgJaA9DCI3ttaD3HkbAlIaUUpRoFUvJaBZHQK16WVoHs1N1fZQoaAZoCWgPQwjHm/wW3dtxwJSGlFKUaBVLcmgWR0CteoItthuwdX2UKGgGaAloD0MI6BVPPdIwE0CUhpRSlGgVS1JoFkdArXqAfU4JeHV9lChoBmgJaA9DCPxyZrtCVVDAlIaUUpRoFUtoaBZHQK16urz5GjN1fZQoaAZoCWgPQwji5H6HIiNnwJSGlFKUaBVL32gWR0Cter4/Vy3kdX2UKGgGaAloD0MINLvurUiMQsCUhpRSlGgVS6toFkdArXrUUGmk33V9lChoBmgJaA9DCC/5n/zdPzvAlIaUUpRoFUufaBZHQK169XgccVB1fZQoaAZoCWgPQwiJmX0eowwUwJSGlFKUaBVLdWgWR0Ctevx1X/5tdX2UKGgGaAloD0MIz7wcdt/hWcCUhpRSlGgVS7VoFkdArXsO2b5M13V9lChoBmgJaA9DCPRqgNJQUmPAlIaUUpRoFUtcaBZHQK17LJpWV/t1fZQoaAZoCWgPQwgz4gLQKDhSwJSGlFKUaBVLmmgWR0Cte0MwL3K0dX2UKGgGaAloD0MIVaUtrvH1ZsCUhpRSlGgVS4doFkdArXtWff4yoHV9lChoBmgJaA9DCFG7XwX4UE3AlIaUUpRoFUuTaBZHQK17cSkj5bh1fZQoaAZoCWgPQwiwyRr1EBhTwJSGlFKUaBVLnmgWR0Cte34m9g4PdX2UKGgGaAloD0MIXalnQShRWsCUhpRSlGgVS3NoFkdArXuKa5PM0XV9lChoBmgJaA9DCPXzpiKVqmXAlIaUUpRoFUtraBZHQK17s6kqMFV1fZQoaAZoCWgPQwg4aoXpe9xYwJSGlFKUaBVL2WgWR0Cte7nYpUgkdX2UKGgGaAloD0MInGotzELPVcCUhpRSlGgVS4doFkdArXu59gF5fXV9lChoBmgJaA9DCNfDl4miyWDAlIaUUpRoFUtoaBZHQK17xEYwZfl1fZQoaAZoCWgPQwhBSuzaXkBqwJSGlFKUaBVL1mgWR0Cte+iCJ40NdX2UKGgGaAloD0MIDVGFP0PbYcCUhpRSlGgVS4poFkdArXv3ZGrjpHV9lChoBmgJaA9DCLcIjPUNRFnAlIaUUpRoFUu+aBZHQK18EZpi7TV1fZQoaAZoCWgPQwhmhSLdz4FOwJSGlFKUaBVLiWgWR0CtfDVNYbKidX2UKGgGaAloD0MIgH106spPQsCUhpRSlGgVS5doFkdArXxNzltCRnV9lChoBmgJaA9DCBcrajCNSmnAlIaUUpRoFUtyaBZHQK18dlS0jTt1fZQoaAZoCWgPQwgNpfYi2thCwJSGlFKUaBVLjmgWR0CtfIeCCjDbdX2UKGgGaAloD0MIbTgsDfyXUsCUhpRSlGgVS55oFkdArXyVY8uBc3V9lChoBmgJaA9DCAh0Jm2qQEvAlIaUUpRoFUuyaBZHQK18o5lvqC91fZQoaAZoCWgPQwiFevoIfKFuwJSGlFKUaBVLmmgWR0CtfLgp8WsSdX2UKGgGaAloD0MISUc5mE2HV8CUhpRSlGgVS3RoFkdArXzA6U7jk3V9lChoBmgJaA9DCNyg9ls7FV7AlIaUUpRoFUuLaBZHQK18yQtBfKJ1fZQoaAZoCWgPQwjNzqJ3KhVawJSGlFKUaBVLfWgWR0CtfM78m8dxdX2UKGgGaAloD0MIyFwZVBu+TcCUhpRSlGgVS21oFkdArXzdxdY4hnV9lChoBmgJaA9DCDLjbaXX+mHAlIaUUpRoFUt0aBZHQK19FWHUMG51fZQoaAZoCWgPQwjuW60Tl7xTwJSGlFKUaBVLlmgWR0CtfRSfL9uQdX2UKGgGaAloD0MICHQmbaraWcCUhpRSlGgVS61oFkdArX0+n4wh4nV9lChoBmgJaA9DCLe28LxUVVPAlIaUUpRoFUt/aBZHQK19U0FbFCN1fZQoaAZoCWgPQwgQWg9fJn1jwJSGlFKUaBVL02gWR0CtfV4gieNDdX2UKGgGaAloD0MIi/1l9+R5J8CUhpRSlGgVS2hoFkdArX1xzYEns3V9lChoBmgJaA9DCOIEptO6eUrAlIaUUpRoFUt3aBZHQK19gona37V1fZQoaAZoCWgPQwg9nMB0WidLwJSGlFKUaBVLXGgWR0CtfZZFgDzRdX2UKGgGaAloD0MIWAOUhhoUUsCUhpRSlGgVS7toFkdArX2cSZjQRnV9lChoBmgJaA9DCA1uawtPL2DAlIaUUpRoFUt3aBZHQK19sdKdxyZ1fZQoaAZoCWgPQwhJopdRLGZRwJSGlFKUaBVLd2gWR0CtfczY287IdX2UKGgGaAloD0MITOMXXkl2U8CUhpRSlGgVS4BoFkdArX3Ym5UcXHV9lChoBmgJaA9DCOCGGK95SULAlIaUUpRoFUtgaBZHQK197wNLDht1fZQoaAZoCWgPQwjiH7b06LJswJSGlFKUaBVLgWgWR0CtffH0se4kdX2UKGgGaAloD0MIv9GOG35DPsCUhpRSlGgVS6NoFkdArX4LMHKOk3V9lChoBmgJaA9DCIZxN4jWiizAlIaUUpRoFUtkaBZHQK1+KQUYbbV1fZQoaAZoCWgPQwh0tKolHYlKwJSGlFKUaBVL3WgWR0CtfkvZh8YydX2UKGgGaAloD0MIzAcEOpOaXsCUhpRSlGgVS3toFkdArX50RUWEb3V9lChoBmgJaA9DCBZO0vyx823AlIaUUpRoFUu5aBZHQK1+jKSPluF1fZQoaAZoCWgPQwhhiQeUDXlywJSGlFKUaBVLfmgWR0Ctfp3Vsk6cdX2UKGgGaAloD0MIatlaXySxXsCUhpRSlGgVS1VoFkdArX6nEKmbb3V9lChoBmgJaA9DCARz9Pi9PVfAlIaUUpRoFUt1aBZHQK1+tnp0OmR1fZQoaAZoCWgPQwhzZrtCn4tkwJSGlFKUaBVLs2gWR0Ctfr2+PBBSdX2UKGgGaAloD0MIGJmAX6MzacCUhpRSlGgVS5doFkdArX7F9F4LTnV9lChoBmgJaA9DCA69xcN7wFPAlIaUUpRoFUuUaBZHQK1+5B0IToN1fZQoaAZoCWgPQwiLbOf7qck+wJSGlFKUaBVLa2gWR0CtfvXMY/FBdX2UKGgGaAloD0MIChNGs7J5TcCUhpRSlGgVS4poFkdArX76+JxecHV9lChoBmgJaA9DCIzbaABvETfAlIaUUpRoFUuFaBZHQK1/CuUUwi91fZQoaAZoCWgPQwhNvtnmxmg/wJSGlFKUaBVLhWgWR0Ctfy1k1/DtdX2UKGgGaAloD0MIhzO/mgPMLsCUhpRSlGgVS7poFkdArX9Ohdt2tHV9lChoBmgJaA9DCMe7I2O1ZFPAlIaUUpRoFUt9aBZHQK1/Txc3VCp1fZQoaAZoCWgPQwg0SMFTyElJwJSGlFKUaBVLV2gWR0Ctf1fFaSs9dX2UKGgGaAloD0MIvmiPF9I+UcCUhpRSlGgVS3NoFkdArX9Y5Lh73XV9lChoBmgJaA9DCHCzeLEwI1TAlIaUUpRoFUtkaBZHQK1/Xo3aSLZ1fZQoaAZoCWgPQwivQspPqmVSwJSGlFKUaBVLbmgWR0Ctf5xLTQVsdX2UKGgGaAloD0MIoG6gwDuwV8CUhpRSlGgVS2RoFkdArX+hk/bCanV9lChoBmgJaA9DCJPkub4PYW7AlIaUUpRoFUu0aBZHQK1/qHHFPzp1fZQoaAZoCWgPQwhWZHRAEu4kwJSGlFKUaBVLcmgWR0Ctf/VNQCSzdX2UKGgGaAloD0MIYOXQIttuV8CUhpRSlGgVS21oFkdArX/600FbFHV9lChoBmgJaA9DCJzbhHtlSV3AlIaUUpRoFUtnaBZHQK2ANVNHpbF1fZQoaAZoCWgPQwjOpiOAG7plwJSGlFKUaBVLkmgWR0CtgD/zreImdX2UKGgGaAloD0MIPzvgumJHU8CUhpRSlGgVS7BoFkdArYBG4XoC+3V9lChoBmgJaA9DCDi9i/fjW1PAlIaUUpRoFUu7aBZHQK2AZyEL6UJ1fZQoaAZoCWgPQwicU8kAUJdawJSGlFKUaBVLjmgWR0CtgHJRoAXEdX2UKGgGaAloD0MIzEHQ0aqASMCUhpRSlGgVS71oFkdArYCV8/lhgHV9lChoBmgJaA9DCNv9KsD3oWjAlIaUUpRoFUuMaBZHQK2Am2+fywx1fZQoaAZoCWgPQwjZz2IpEplgwJSGlFKUaBVL5mgWR0CtgLJdrwfAdX2UKGgGaAloD0MIcLA3MSSdUcCUhpRSlGgVS5xoFkdArYC4vcrRSnV9lChoBmgJaA9DCPEsQUZAAVDAlIaUUpRoFUtXaBZHQK2AzlJ6IFh1ZS4="
|
82 |
+
},
|
83 |
+
"ep_success_buffer": {
|
84 |
+
":type:": "<class 'collections.deque'>",
|
85 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
86 |
+
},
|
87 |
+
"_n_updates": 31,
|
88 |
+
"n_steps": 2048,
|
89 |
+
"gamma": 0.99,
|
90 |
+
"gae_lambda": 0.98,
|
91 |
+
"ent_coef": 0.01,
|
92 |
+
"vf_coef": 0.5,
|
93 |
+
"max_grad_norm": 0.5,
|
94 |
+
"normalize_advantage": false
|
95 |
+
}
|
a2c-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7e2d97bed5b69e9178e98f8613abf396cbabefb39e0d4608599340bb24be8644
|
3 |
+
size 42561
|
a2c-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:38a02dec4589c482a6c143b5344c0e7ec92b6adee3352675e08e64edab00aef5
|
3 |
+
size 43201
|
a2c-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f709f166f80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f709f16f050>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f709f16f0e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f709f16f170>", "_build": "<function ActorCriticPolicy._build at 0x7f709f16f200>", "forward": "<function ActorCriticPolicy.forward at 0x7f709f16f290>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f709f16f320>", "_predict": "<function ActorCriticPolicy._predict at 0x7f709f16f3b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f709f16f440>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f709f16f4d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f709f16f560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f709f13e390>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651770197.7187119, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAK2OlD7+rrc/LvRGPz5aHL4ovF6+GGwxPAAAAAAAAAAAw53UvrLeZD8Odia/BRZAvyjECr4Gvma+AAAAAAAAAACmATy+ejhAP8U4970wC92+YiN7OkZVOb0AAAAAAAAAAFBDvD7065892v1tvzSTWr/WDQ0/eL1ZvgAAAAAAAAAAQp+nvr7XoT/47fq+NyeLvvdSD75sHSG+AAAAAAAAAAB6UKa+YwJ0P733375y8h2/VZnYvV3kU74AAAAAAAAAAM3Qxzw3Uwi9RgaDvtaswb6F0PA82CSzvwAAgD8AAIA/Jm/GvcUgvj9UFxC/QCknPi8tiT0S26o8AAAAAAAAAAAmKhK+DTibP081mL7sJ+K9Qgszvo5xlr4AAAAAAAAAAICykj2QtcQ/GswpPmJfpDxjSz8+S4J3PgAAAAAAAAAAuvB4vkbEYz/98k2/bOALvy6k2z4gxDe+AAAAAAAAAADoZgk/9+zGPm3DWD6B/WS/wNwvP7BpKz4AAAAAAAAAAKoHgD4D5wY/nuGfPoVqVL9T9vU9JYhlPgAAAAAAAAAABsAIvhSLbT86Wpy79I3svtIrSr5XAKE9AAAAAAAAAABa0ow+B4x5PkVb5TwhFTW/2pTAva4/yr0AAAAAAAAAAAahPb66BZc/oiUsvxDuzr7gOUk9nmYSvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdv9YiA7oXcCUhpRSlIwBbJRLvowBdJRHQK14rPrOZ9d1fZQoaAZoCWgPQwinCHB6l0FrwJSGlFKUaBVLj2gWR0CteLiudPLxdX2UKGgGaAloD0MIcOmY84xYX8CUhpRSlGgVS4RoFkdArXi+clPac3V9lChoBmgJaA9DCJOmQdG8g2XAlIaUUpRoFUuVaBZHQK145+MIeHV1fZQoaAZoCWgPQwhYrOEi9/JGwJSGlFKUaBVLc2gWR0CteSSfUWl/dX2UKGgGaAloD0MIaVTgZBtgN8CUhpRSlGgVS2doFkdArXlKy+pOvnV9lChoBmgJaA9DCM4AF2TLck/AlIaUUpRoFUt3aBZHQK15W2MsH0N1fZQoaAZoCWgPQwhFvHX+7WpIwJSGlFKUaBVLd2gWR0CteWVLSNOudX2UKGgGaAloD0MIPiZSms1DOMCUhpRSlGgVS7hoFkdArXmq5Zr57HV9lChoBmgJaA9DCCYd5WA2+nHAlIaUUpRoFUvbaBZHQK15qyprDZV1fZQoaAZoCWgPQwhwB+qUR6BfwJSGlFKUaBVLUWgWR0CtebHAymALdX2UKGgGaAloD0MIlE25wru8O8CUhpRSlGgVS3doFkdArXnNCgK4QXV9lChoBmgJaA9DCHuGcMyyW2vAlIaUUpRoFUt0aBZHQK1522G7Bft1fZQoaAZoCWgPQwj2RUJbznVQwJSGlFKUaBVLfmgWR0Cteeu8K5TZdX2UKGgGaAloD0MIOEiI8gVZSMCUhpRSlGgVS4NoFkdArXoQEbHZK3V9lChoBmgJaA9DCIfcDDdgu2DAlIaUUpRoFUu5aBZHQK16HrOZ9eB1fZQoaAZoCWgPQwikF7X7VTxxwJSGlFKUaBVLwmgWR0Cteh/gzguRdX2UKGgGaAloD0MILGfvjLZHUsCUhpRSlGgVS8ZoFkdArXpb+ee4C3V9lChoBmgJaA9DCI3ttaD3HkbAlIaUUpRoFUvJaBZHQK16WVoHs1N1fZQoaAZoCWgPQwjHm/wW3dtxwJSGlFKUaBVLcmgWR0CteoItthuwdX2UKGgGaAloD0MI6BVPPdIwE0CUhpRSlGgVS1JoFkdArXqAfU4JeHV9lChoBmgJaA9DCPxyZrtCVVDAlIaUUpRoFUtoaBZHQK16urz5GjN1fZQoaAZoCWgPQwji5H6HIiNnwJSGlFKUaBVL32gWR0Cter4/Vy3kdX2UKGgGaAloD0MINLvurUiMQsCUhpRSlGgVS6toFkdArXrUUGmk33V9lChoBmgJaA9DCC/5n/zdPzvAlIaUUpRoFUufaBZHQK169XgccVB1fZQoaAZoCWgPQwiJmX0eowwUwJSGlFKUaBVLdWgWR0Ctevx1X/5tdX2UKGgGaAloD0MIz7wcdt/hWcCUhpRSlGgVS7VoFkdArXsO2b5M13V9lChoBmgJaA9DCPRqgNJQUmPAlIaUUpRoFUtcaBZHQK17LJpWV/t1fZQoaAZoCWgPQwgz4gLQKDhSwJSGlFKUaBVLmmgWR0Cte0MwL3K0dX2UKGgGaAloD0MIVaUtrvH1ZsCUhpRSlGgVS4doFkdArXtWff4yoHV9lChoBmgJaA9DCFG7XwX4UE3AlIaUUpRoFUuTaBZHQK17cSkj5bh1fZQoaAZoCWgPQwiwyRr1EBhTwJSGlFKUaBVLnmgWR0Cte34m9g4PdX2UKGgGaAloD0MIXalnQShRWsCUhpRSlGgVS3NoFkdArXuKa5PM0XV9lChoBmgJaA9DCPXzpiKVqmXAlIaUUpRoFUtraBZHQK17s6kqMFV1fZQoaAZoCWgPQwg4aoXpe9xYwJSGlFKUaBVL2WgWR0Cte7nYpUgkdX2UKGgGaAloD0MInGotzELPVcCUhpRSlGgVS4doFkdArXu59gF5fXV9lChoBmgJaA9DCNfDl4miyWDAlIaUUpRoFUtoaBZHQK17xEYwZfl1fZQoaAZoCWgPQwhBSuzaXkBqwJSGlFKUaBVL1mgWR0Cte+iCJ40NdX2UKGgGaAloD0MIDVGFP0PbYcCUhpRSlGgVS4poFkdArXv3ZGrjpHV9lChoBmgJaA9DCLcIjPUNRFnAlIaUUpRoFUu+aBZHQK18EZpi7TV1fZQoaAZoCWgPQwhmhSLdz4FOwJSGlFKUaBVLiWgWR0CtfDVNYbKidX2UKGgGaAloD0MIgH106spPQsCUhpRSlGgVS5doFkdArXxNzltCRnV9lChoBmgJaA9DCBcrajCNSmnAlIaUUpRoFUtyaBZHQK18dlS0jTt1fZQoaAZoCWgPQwgNpfYi2thCwJSGlFKUaBVLjmgWR0CtfIeCCjDbdX2UKGgGaAloD0MIbTgsDfyXUsCUhpRSlGgVS55oFkdArXyVY8uBc3V9lChoBmgJaA9DCAh0Jm2qQEvAlIaUUpRoFUuyaBZHQK18o5lvqC91fZQoaAZoCWgPQwiFevoIfKFuwJSGlFKUaBVLmmgWR0CtfLgp8WsSdX2UKGgGaAloD0MISUc5mE2HV8CUhpRSlGgVS3RoFkdArXzA6U7jk3V9lChoBmgJaA9DCNyg9ls7FV7AlIaUUpRoFUuLaBZHQK18yQtBfKJ1fZQoaAZoCWgPQwjNzqJ3KhVawJSGlFKUaBVLfWgWR0CtfM78m8dxdX2UKGgGaAloD0MIyFwZVBu+TcCUhpRSlGgVS21oFkdArXzdxdY4hnV9lChoBmgJaA9DCDLjbaXX+mHAlIaUUpRoFUt0aBZHQK19FWHUMG51fZQoaAZoCWgPQwjuW60Tl7xTwJSGlFKUaBVLlmgWR0CtfRSfL9uQdX2UKGgGaAloD0MICHQmbaraWcCUhpRSlGgVS61oFkdArX0+n4wh4nV9lChoBmgJaA9DCLe28LxUVVPAlIaUUpRoFUt/aBZHQK19U0FbFCN1fZQoaAZoCWgPQwgQWg9fJn1jwJSGlFKUaBVL02gWR0CtfV4gieNDdX2UKGgGaAloD0MIi/1l9+R5J8CUhpRSlGgVS2hoFkdArX1xzYEns3V9lChoBmgJaA9DCOIEptO6eUrAlIaUUpRoFUt3aBZHQK19gona37V1fZQoaAZoCWgPQwg9nMB0WidLwJSGlFKUaBVLXGgWR0CtfZZFgDzRdX2UKGgGaAloD0MIWAOUhhoUUsCUhpRSlGgVS7toFkdArX2cSZjQRnV9lChoBmgJaA9DCA1uawtPL2DAlIaUUpRoFUt3aBZHQK19sdKdxyZ1fZQoaAZoCWgPQwhJopdRLGZRwJSGlFKUaBVLd2gWR0CtfczY287IdX2UKGgGaAloD0MITOMXXkl2U8CUhpRSlGgVS4BoFkdArX3Ym5UcXHV9lChoBmgJaA9DCOCGGK95SULAlIaUUpRoFUtgaBZHQK197wNLDht1fZQoaAZoCWgPQwjiH7b06LJswJSGlFKUaBVLgWgWR0CtffH0se4kdX2UKGgGaAloD0MIv9GOG35DPsCUhpRSlGgVS6NoFkdArX4LMHKOk3V9lChoBmgJaA9DCIZxN4jWiizAlIaUUpRoFUtkaBZHQK1+KQUYbbV1fZQoaAZoCWgPQwh0tKolHYlKwJSGlFKUaBVL3WgWR0CtfkvZh8YydX2UKGgGaAloD0MIzAcEOpOaXsCUhpRSlGgVS3toFkdArX50RUWEb3V9lChoBmgJaA9DCBZO0vyx823AlIaUUpRoFUu5aBZHQK1+jKSPluF1fZQoaAZoCWgPQwhhiQeUDXlywJSGlFKUaBVLfmgWR0Ctfp3Vsk6cdX2UKGgGaAloD0MIatlaXySxXsCUhpRSlGgVS1VoFkdArX6nEKmbb3V9lChoBmgJaA9DCARz9Pi9PVfAlIaUUpRoFUt1aBZHQK1+tnp0OmR1fZQoaAZoCWgPQwhzZrtCn4tkwJSGlFKUaBVLs2gWR0Ctfr2+PBBSdX2UKGgGaAloD0MIGJmAX6MzacCUhpRSlGgVS5doFkdArX7F9F4LTnV9lChoBmgJaA9DCA69xcN7wFPAlIaUUpRoFUuUaBZHQK1+5B0IToN1fZQoaAZoCWgPQwiLbOf7qck+wJSGlFKUaBVLa2gWR0CtfvXMY/FBdX2UKGgGaAloD0MIChNGs7J5TcCUhpRSlGgVS4poFkdArX76+JxecHV9lChoBmgJaA9DCIzbaABvETfAlIaUUpRoFUuFaBZHQK1/CuUUwi91fZQoaAZoCWgPQwhNvtnmxmg/wJSGlFKUaBVLhWgWR0Ctfy1k1/DtdX2UKGgGaAloD0MIhzO/mgPMLsCUhpRSlGgVS7poFkdArX9Ohdt2tHV9lChoBmgJaA9DCMe7I2O1ZFPAlIaUUpRoFUt9aBZHQK1/Txc3VCp1fZQoaAZoCWgPQwg0SMFTyElJwJSGlFKUaBVLV2gWR0Ctf1fFaSs9dX2UKGgGaAloD0MIvmiPF9I+UcCUhpRSlGgVS3NoFkdArX9Y5Lh73XV9lChoBmgJaA9DCHCzeLEwI1TAlIaUUpRoFUtkaBZHQK1/Xo3aSLZ1fZQoaAZoCWgPQwivQspPqmVSwJSGlFKUaBVLbmgWR0Ctf5xLTQVsdX2UKGgGaAloD0MIoG6gwDuwV8CUhpRSlGgVS2RoFkdArX+hk/bCanV9lChoBmgJaA9DCJPkub4PYW7AlIaUUpRoFUu0aBZHQK1/qHHFPzp1fZQoaAZoCWgPQwhWZHRAEu4kwJSGlFKUaBVLcmgWR0Ctf/VNQCSzdX2UKGgGaAloD0MIYOXQIttuV8CUhpRSlGgVS21oFkdArX/600FbFHV9lChoBmgJaA9DCJzbhHtlSV3AlIaUUpRoFUtnaBZHQK2ANVNHpbF1fZQoaAZoCWgPQwjOpiOAG7plwJSGlFKUaBVLkmgWR0CtgD/zreImdX2UKGgGaAloD0MIPzvgumJHU8CUhpRSlGgVS7BoFkdArYBG4XoC+3V9lChoBmgJaA9DCDi9i/fjW1PAlIaUUpRoFUu7aBZHQK2AZyEL6UJ1fZQoaAZoCWgPQwicU8kAUJdawJSGlFKUaBVLjmgWR0CtgHJRoAXEdX2UKGgGaAloD0MIzEHQ0aqASMCUhpRSlGgVS71oFkdArYCV8/lhgHV9lChoBmgJaA9DCNv9KsD3oWjAlIaUUpRoFUuMaBZHQK2Am2+fywx1fZQoaAZoCWgPQwjZz2IpEplgwJSGlFKUaBVL5mgWR0CtgLJdrwfAdX2UKGgGaAloD0MIcLA3MSSdUcCUhpRSlGgVS5xoFkdArYC4vcrRSnV9lChoBmgJaA9DCPEsQUZAAVDAlIaUUpRoFUtXaBZHQK2AzlJ6IFh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4882e7700fa7e0e66b15d1db0a5c9122e67bbac5438fbeec2c40dfa5ece5d453
|
3 |
+
size 78064
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1467.755754808709, "std_reward": 587.3959475517717, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T17:10:02.102016"}
|