#This is an example that uses the websockets api to know when a prompt execution is done #Once the prompt execution is done it downloads the images using the /history endpoint import websocket #NOTE: websocket-client (https://github.com/websocket-client/websocket-client) import uuid import json import urllib.request import urllib.parse server_address = "127.0.0.1:8188" client_id = str(uuid.uuid4()) def queue_prompt(prompt): p = {"prompt": prompt, "client_id": client_id} data = json.dumps(p).encode('utf-8') req = urllib.request.Request("http://{}/prompt".format(server_address), data=data) return json.loads(urllib.request.urlopen(req).read()) def get_image(filename, subfolder, folder_type): data = {"filename": filename, "subfolder": subfolder, "type": folder_type} url_values = urllib.parse.urlencode(data) with urllib.request.urlopen("http://{}/view?{}".format(server_address, url_values)) as response: return response.read() def get_history(prompt_id): with urllib.request.urlopen("http://{}/history/{}".format(server_address, prompt_id)) as response: return json.loads(response.read()) def get_images(ws, prompt): prompt_id = queue_prompt(prompt)['prompt_id'] output_images = {} while True: out = ws.recv() if isinstance(out, str): message = json.loads(out) if message['type'] == 'executing': data = message['data'] if data['node'] is None and data['prompt_id'] == prompt_id: break #Execution is done else: continue #previews are binary data history = get_history(prompt_id)[prompt_id] for node_id in history['outputs']: node_output = history['outputs'][node_id] images_output = [] if 'images' in node_output: for image in node_output['images']: image_data = get_image(image['filename'], image['subfolder'], image['type']) images_output.append(image_data) output_images[node_id] = images_output return output_images prompt_text = """ { "1": { "inputs": { "sam_model": "sam_vit_h (2.56GB)", "grounding_dino_model": "GroundingDINO_SwinT_OGC (694MB)", "threshold": 0.3, "detail_method": "VITMatte", "detail_erode": 6, "detail_dilate": 6, "black_point": 0.01, "white_point": 0.99, "process_detail": false, "prompt": "shirt", "device": "cuda", "max_megapixels": 2, "cache_model": true, "image": [ "2", 0 ] }, "class_type": "LayerMask: SegmentAnythingUltra V2", "_meta": { "title": "LayerMask: SegmentAnythingUltra V2" } }, "2": { "inputs": { "image": "q.jpg", "upload": "image" }, "class_type": "LoadImage", "_meta": { "title": "Load Image" } }, "3": { "inputs": { "image": "tshirt.jpeg", "upload": "image" }, "class_type": "LoadImage", "_meta": { "title": "Load Image" } }, "5": { "inputs": { "mask_grow": 25, "mixed_precision": "fp16", "seed": 95593377186337, "steps": 40, "cfg": 2.5, "image": [ "2", 0 ], "mask": [ "1", 1 ], "refer_image": [ "3", 0 ] }, "class_type": "CatVTONWrapper", "_meta": { "title": "CatVTON Wrapper" } }, "6": { "inputs": { "images": [ "5", 0 ] }, "class_type": "PreviewImage", "_meta": { "title": "Preview Image" } } }""" prompt = json.loads(prompt_text) prompt["2"]["inputs"]["image"] = "\\ put your input person pose image" prompt["3"]["inputs"]["image"] = "\\ put your input cloth image" ws = websocket.WebSocket() ws.connect("ws://{}/ws?clientId={}".format(server_address, client_id)) images = get_images(ws, prompt) # Commented out code to display the output images: for node_id in images: for image_data in images[node_id]: from PIL import Image import io image = Image.open(io.BytesIO(image_data)) image.save("output.jpg") # image.show()