--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: modernbert-base-conll2012_ontonotesv5-english_v4-ner results: [] --- # modernbert-base-conll2012_ontonotesv5-english_v4-ner This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0756 - Precision: 0.8463 - Recall: 0.8628 - F1: 0.8545 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | 0.0683 | 1.0 | 2350 | 0.0765 | 0.8224 | 0.8438 | 0.8329 | | 0.0353 | 2.0 | 4700 | 0.0692 | 0.8427 | 0.8651 | 0.8537 | | 0.0189 | 3.0 | 7050 | 0.0756 | 0.8463 | 0.8628 | 0.8545 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.0+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0