--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: modernbert-base-conll2012_ontonotesv5-english_v4-ner results: [] --- # modernbert-base-conll2012_ontonotesv5-english_v4-ner This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0679 - Precision: 0.8636 - Recall: 0.8704 - F1: 0.8670 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | 0.0698 | 1.0 | 2350 | 0.0795 | 0.8121 | 0.8344 | 0.8231 | | 0.0356 | 2.0 | 4700 | 0.0707 | 0.8438 | 0.8575 | 0.8506 | | 0.0184 | 3.0 | 7050 | 0.0795 | 0.8461 | 0.8567 | 0.8513 | ### Framework versions - Transformers 4.48.0 - Pytorch 2.5.0+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0