--- license: apache-2.0 base_model: openai/whisper-tiny.en tags: - generated_from_trainer datasets: - tedlium metrics: - wer model-index: - name: whisper-tiny-openslrdev results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: tedlium type: tedlium config: release1 split: test args: release1 metrics: - name: Wer type: wer value: 90.4153910381297 --- # whisper-tiny-openslrdev This model is a fine-tuned version of [openai/whisper-tiny.en](https://huggingface.co/openai/whisper-tiny.en) on the tedlium dataset. It achieves the following results on the evaluation set: - Loss: 2.0820 - Wer: 90.4154 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 300 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | No log | 0.06 | 20 | 3.7027 | 35.3291 | | 3.9098 | 0.13 | 40 | 3.3264 | 35.0647 | | 3.0852 | 0.19 | 60 | 2.9769 | 34.0871 | | 2.2682 | 0.26 | 80 | 2.7802 | 31.6309 | | 1.6662 | 0.32 | 100 | 2.5284 | 27.7728 | | 1.6662 | 0.38 | 120 | 2.4481 | 24.3668 | | 1.2505 | 0.45 | 140 | 2.4118 | 21.6532 | | 1.0859 | 0.51 | 160 | 2.3687 | 20.9087 | | 0.9491 | 0.58 | 180 | 2.1924 | 19.6493 | | 0.8746 | 0.64 | 200 | 2.1752 | 22.1229 | | 0.8746 | 0.7 | 220 | 2.2546 | 29.7245 | | 0.8064 | 0.77 | 240 | 2.1611 | 39.6326 | | 0.733 | 0.83 | 260 | 2.1281 | 55.7334 | | 0.7135 | 0.89 | 280 | 2.0406 | 75.1705 | | 0.6806 | 0.96 | 300 | 2.0820 | 90.4154 | ### Framework versions - Transformers 4.39.2 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2