--- license: cc-by-4.0 language: - hak pipeline_tag: automatic-speech-recognition --- # Model Card for whisper-large-v3-taiwanese-hakka This model is a early fine-tuned version of the Taiwanese indigenous [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3), which uses the ids of each dialect as prompts during training. Note: we use indonesian as whisper language id ## Dialect and Id - 阿美語: ami - 賽德克語: sdq - 太魯閣語: trv ### Training process The training of the model was performed with the following hyperparameters - Batch size: 32 - Epochs: 4 - Warmup Steps: 1170 - Total Steps: 11700 - Learning rate: 7e-5 - Data augmentation: No ### How to use ```python import torch from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 model_id = "formospeech/whisper-large-v3-formosan-iso-prompt" dialect_id = "ami" model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True ) model.to(device) processor = AutoProcessor.from_pretrained(model_id) pipe = pipeline( "automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=30, batch_size=16, torch_dtype=torch_dtype, device=device, ) generate_kwargs = {"language": "id", "prompt_ids": torch.from_numpy(processor.get_prompt_ids(dialect_id)).to(device)} transcription = pipe("path/to/my_audio.wav", generate_kwargs=generate_kwargs) print(transcription.replace(f" {dialect_id}", "")) ```