metadata
base_model: TaylorAI/bge-micro
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:3210255
- loss:CachedMultipleNegativesRankingLoss
widget:
- source_sentence: donepezil hydrochloride monohydrate
sentences:
- Cn1nccc1[C@H]1CC[C@H](O[Si](C)(C)C(C)(C)C)C[C@@H]1OC(=O)c1ccccc1
- COc1cc2c(cc1OC)C(=O)C(CC1CCN(Cc3ccccc3)CC1)C2.Cl.O
- C(=O)(OC)C1=CC=C(C=C1)CC(C)=O
- source_sentence: >-
6-Cyclopropylmethoxy-5-(3,3-difluoro-azetidin-1-yl)-pyridine-2-carboxylic
acid tert-butyl-(5-methyl-[1,3,4]oxadiazol-2-ylmethyl)-amide
sentences:
- Cc1nnc(CN(C(=O)c2ccc(N3CC(F)(F)C3)c(OCC3CC3)n2)C(C)(C)C)o1
- COc1cccc(CCCC=C(Br)Br)c1
- CN(C)CCNC(=O)c1ccc2oc(=O)n(Cc3ccc4[nH]c(=O)[nH]c4c3)c2c1
- source_sentence: >-
N-(2-chlorophenyl)-6,8-difluoro-N-methyl-4H-thieno[3,2-c]chromene-2-carboxamide
sentences:
- CN(C(=O)c1cc2c(s1)-c1cc(F)cc(F)c1OC2)c1ccccc1Cl
- ClC(C(=O)OCCOCC1=CC=C(C=C1)F)C
- C(C)OC(\C=C(/C)\OC1=C(C(=CC=C1F)OC(C)C)F)=O
- source_sentence: >-
6-[2-[(3-chlorophenyl)methyl]-1,3,3a,4,6,6a-hexahydropyrrolo[3,4-c]pyrrol-5-yl]-3-(trifluoromethyl)-[1,2,4]triazolo[4,3-b]pyridazine
sentences:
- CC(=O)OCCOCn1cc(C)c(=O)[nH]c1=O
- NC1=C(C(=NN1C1=C(C=C(C=C1Cl)C(F)(F)F)Cl)C#N)S(=O)(=O)C
- ClC=1C=C(C=CC1)CN1CC2CN(CC2C1)C=1C=CC=2N(N1)C(=NN2)C(F)(F)F
- source_sentence: >-
(±)-cis-2-(4-methoxyphenyl)-3-acetoxy-5-[2-(dimethylamino)ethyl]-8-chloro-2,3-dihydro-1,5-benzothiazepin-4(5H)-one
hydrochloride
sentences:
- N(=[N+]=[N-])C(C(=O)C1=NC(=C(C(=N1)C(C)(C)C)O)C(C)(C)C)C
- O[C@@H]1[C@H](O)[C@@H](Oc2nc(N3CCNCC3)nc3ccccc23)C[C@H]1O
- Cl.COC1=CC=C(C=C1)[C@@H]1SC2=C(N(C([C@@H]1OC(C)=O)=O)CCN(C)C)C=CC(=C2)Cl
model-index:
- name: MPNet base trained on AllNLI triplets
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: bge micro test
type: bge-micro-test
metrics:
- type: pearson_cosine
value: .nan
name: Pearson Cosine
- type: spearman_cosine
value: .nan
name: Spearman Cosine
- type: pearson_manhattan
value: .nan
name: Pearson Manhattan
- type: spearman_manhattan
value: .nan
name: Spearman Manhattan
- type: pearson_euclidean
value: .nan
name: Pearson Euclidean
- type: spearman_euclidean
value: .nan
name: Spearman Euclidean
- type: pearson_dot
value: .nan
name: Pearson Dot
- type: spearman_dot
value: .nan
name: Spearman Dot
- type: pearson_max
value: .nan
name: Pearson Max
- type: spearman_max
value: .nan
name: Spearman Max
MPNet base trained on AllNLI triplets
This is a sentence-transformers model finetuned from TaylorAI/bge-micro. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: TaylorAI/bge-micro
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("fpc/bge-micro-smiles")
# Run inference
sentences = [
'(±)-cis-2-(4-methoxyphenyl)-3-acetoxy-5-[2-(dimethylamino)ethyl]-8-chloro-2,3-dihydro-1,5-benzothiazepin-4(5H)-one hydrochloride',
'Cl.COC1=CC=C(C=C1)[C@@H]1SC2=C(N(C([C@@H]1OC(C)=O)=O)CCN(C)C)C=CC(=C2)Cl',
'O[C@@H]1[C@H](O)[C@@H](Oc2nc(N3CCNCC3)nc3ccccc23)C[C@H]1O',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 3,210,255 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 5 tokens
- mean: 42.57 tokens
- max: 153 tokens
- min: 4 tokens
- mean: 40.02 tokens
- max: 325 tokens
- Samples:
anchor positive 4-t-butylbromobenzene
C(C)(C)(C)C1=CC=C(C=C1)Br
1-methyl-4-(morpholine-4-carbonyl)-N-(2-phenyl-[1,2,4]triazolo[1,5-a]pyridin-7-yl)-1H-pyrazole-5-carboxamide
CN1N=CC(=C1C(=O)NC1=CC=2N(C=C1)N=C(N2)C2=CC=CC=C2)C(=O)N2CCOCC2
Phthalimide
C1(C=2C(C(N1)=O)=CC=CC2)=O
- Loss:
CachedMultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 512learning_rate
: 2e-05num_train_epochs
: 4warmup_ratio
: 0.1bf16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 512per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | bge-micro-test_spearman_cosine |
---|---|---|---|
0.0159 | 100 | 6.1861 | - |
0.0319 | 200 | 6.0547 | - |
0.0478 | 300 | 5.6041 | - |
0.0638 | 400 | 4.9367 | - |
0.0797 | 500 | 4.3412 | - |
0.0957 | 600 | 3.8245 | - |
0.1116 | 700 | 3.3188 | - |
0.1276 | 800 | 2.869 | - |
0.1435 | 900 | 2.5149 | - |
0.1595 | 1000 | 2.2282 | - |
0.1754 | 1100 | 2.0046 | - |
0.1914 | 1200 | 1.8032 | - |
0.2073 | 1300 | 1.6289 | - |
0.2232 | 1400 | 1.4567 | - |
0.2392 | 1500 | 1.3326 | - |
0.2551 | 1600 | 1.2127 | - |
0.2711 | 1700 | 1.0909 | - |
0.2870 | 1800 | 1.0021 | - |
0.3030 | 1900 | 0.9135 | - |
0.3189 | 2000 | 0.8378 | - |
0.3349 | 2100 | 0.7758 | - |
0.3508 | 2200 | 0.7031 | - |
0.3668 | 2300 | 0.6418 | - |
0.3827 | 2400 | 0.5965 | - |
0.3987 | 2500 | 0.5461 | - |
0.4146 | 2600 | 0.5039 | - |
0.4306 | 2700 | 0.4674 | - |
0.4465 | 2800 | 0.4339 | - |
0.4624 | 2900 | 0.4045 | - |
0.4784 | 3000 | 0.373 | - |
0.4943 | 3100 | 0.3566 | - |
0.5103 | 3200 | 0.3348 | - |
0.5262 | 3300 | 0.3215 | - |
0.5422 | 3400 | 0.302 | - |
0.5581 | 3500 | 0.2826 | - |
0.5741 | 3600 | 0.2803 | - |
0.5900 | 3700 | 0.2616 | - |
0.6060 | 3800 | 0.2554 | - |
0.6219 | 3900 | 0.234 | - |
0.6379 | 4000 | 0.2306 | - |
0.6538 | 4100 | 0.2224 | - |
0.6697 | 4200 | 0.2141 | - |
0.6857 | 4300 | 0.2117 | - |
0.7016 | 4400 | 0.204 | - |
0.7176 | 4500 | 0.198 | - |
0.7335 | 4600 | 0.1986 | - |
0.7495 | 4700 | 0.1821 | - |
0.7654 | 4800 | 0.1813 | - |
0.7814 | 4900 | 0.1741 | - |
0.7973 | 5000 | 0.1697 | - |
0.8133 | 5100 | 0.1655 | - |
0.8292 | 5200 | 0.1623 | - |
0.8452 | 5300 | 0.1593 | - |
0.8611 | 5400 | 0.1566 | - |
0.8771 | 5500 | 0.151 | - |
0.8930 | 5600 | 0.1526 | - |
0.9089 | 5700 | 0.1453 | - |
0.9249 | 5800 | 0.1448 | - |
0.9408 | 5900 | 0.1369 | - |
0.9568 | 6000 | 0.1409 | - |
0.9727 | 6100 | 0.1373 | - |
0.9887 | 6200 | 0.133 | - |
1.0046 | 6300 | 0.1269 | - |
1.0206 | 6400 | 0.1274 | - |
1.0365 | 6500 | 0.1271 | - |
1.0525 | 6600 | 0.1216 | - |
1.0684 | 6700 | 0.1176 | - |
1.0844 | 6800 | 0.1208 | - |
1.1003 | 6900 | 0.1177 | - |
1.1162 | 7000 | 0.1175 | - |
1.1322 | 7100 | 0.1109 | - |
1.1481 | 7200 | 0.1118 | - |
1.1641 | 7300 | 0.1085 | - |
1.1800 | 7400 | 0.1155 | - |
1.1960 | 7500 | 0.1079 | - |
1.2119 | 7600 | 0.1087 | - |
1.2279 | 7700 | 0.1004 | - |
1.2438 | 7800 | 0.1084 | - |
1.2598 | 7900 | 0.1089 | - |
1.2757 | 8000 | 0.1012 | - |
1.2917 | 8100 | 0.1037 | - |
1.3076 | 8200 | 0.1004 | - |
1.3236 | 8300 | 0.0979 | - |
1.3395 | 8400 | 0.1007 | - |
1.3554 | 8500 | 0.0956 | - |
1.3714 | 8600 | 0.0972 | - |
1.3873 | 8700 | 0.0947 | - |
1.4033 | 8800 | 0.0931 | - |
1.4192 | 8900 | 0.0948 | - |
1.4352 | 9000 | 0.0925 | - |
1.4511 | 9100 | 0.0933 | - |
1.4671 | 9200 | 0.0888 | - |
1.4830 | 9300 | 0.0877 | - |
1.4990 | 9400 | 0.0889 | - |
1.5149 | 9500 | 0.0895 | - |
1.5309 | 9600 | 0.0892 | - |
1.5468 | 9700 | 0.089 | - |
1.5627 | 9800 | 0.0828 | - |
1.5787 | 9900 | 0.0906 | - |
1.5946 | 10000 | 0.0893 | - |
1.6106 | 10100 | 0.0849 | - |
1.6265 | 10200 | 0.0811 | - |
1.6425 | 10300 | 0.0823 | - |
1.6584 | 10400 | 0.0806 | - |
1.6744 | 10500 | 0.0815 | - |
1.6903 | 10600 | 0.0832 | - |
1.7063 | 10700 | 0.0856 | - |
1.7222 | 10800 | 0.081 | - |
1.7382 | 10900 | 0.0831 | - |
1.7541 | 11000 | 0.0767 | - |
1.7701 | 11100 | 0.0779 | - |
1.7860 | 11200 | 0.0792 | - |
1.8019 | 11300 | 0.0771 | - |
1.8179 | 11400 | 0.0783 | - |
1.8338 | 11500 | 0.0749 | - |
1.8498 | 11600 | 0.0755 | - |
1.8657 | 11700 | 0.0778 | - |
1.8817 | 11800 | 0.0753 | - |
1.8976 | 11900 | 0.0767 | - |
1.9136 | 12000 | 0.0725 | - |
1.9295 | 12100 | 0.0744 | - |
1.9455 | 12200 | 0.0743 | - |
1.9614 | 12300 | 0.0722 | - |
1.9774 | 12400 | 0.0712 | - |
1.9933 | 12500 | 0.0709 | - |
2.0092 | 12600 | 0.0694 | - |
2.0252 | 12700 | 0.0705 | - |
2.0411 | 12800 | 0.0715 | - |
2.0571 | 12900 | 0.0705 | - |
2.0730 | 13000 | 0.0653 | - |
2.0890 | 13100 | 0.0698 | - |
2.1049 | 13200 | 0.0676 | - |
2.1209 | 13300 | 0.0684 | - |
2.1368 | 13400 | 0.0644 | - |
2.1528 | 13500 | 0.0652 | - |
2.1687 | 13600 | 0.0673 | - |
2.1847 | 13700 | 0.067 | - |
2.2006 | 13800 | 0.0645 | - |
2.2166 | 13900 | 0.0633 | - |
2.2325 | 14000 | 0.0645 | - |
2.2484 | 14100 | 0.0698 | - |
2.2644 | 14200 | 0.0655 | - |
2.2803 | 14300 | 0.0654 | - |
2.2963 | 14400 | 0.0656 | - |
2.3122 | 14500 | 0.0631 | - |
2.3282 | 14600 | 0.0628 | - |
2.3441 | 14700 | 0.0671 | - |
2.3601 | 14800 | 0.0659 | - |
2.3760 | 14900 | 0.0619 | - |
2.3920 | 15000 | 0.0618 | - |
2.4079 | 15100 | 0.0624 | - |
2.4239 | 15200 | 0.0616 | - |
2.4398 | 15300 | 0.0631 | - |
2.4557 | 15400 | 0.0639 | - |
2.4717 | 15500 | 0.0585 | - |
2.4876 | 15600 | 0.0607 | - |
2.5036 | 15700 | 0.0615 | - |
2.5195 | 15800 | 0.062 | - |
2.5355 | 15900 | 0.0621 | - |
2.5514 | 16000 | 0.0608 | - |
2.5674 | 16100 | 0.0594 | - |
2.5833 | 16200 | 0.0631 | - |
2.5993 | 16300 | 0.0635 | - |
2.6152 | 16400 | 0.06 | - |
2.6312 | 16500 | 0.0581 | - |
2.6471 | 16600 | 0.0607 | - |
2.6631 | 16700 | 0.0577 | - |
2.6790 | 16800 | 0.0592 | - |
2.6949 | 16900 | 0.0625 | - |
2.7109 | 17000 | 0.0622 | - |
2.7268 | 17100 | 0.0573 | - |
2.7428 | 17200 | 0.0613 | - |
2.7587 | 17300 | 0.0587 | - |
2.7747 | 17400 | 0.0587 | - |
2.7906 | 17500 | 0.0588 | - |
2.8066 | 17600 | 0.0568 | - |
2.8225 | 17700 | 0.0573 | - |
2.8385 | 17800 | 0.0575 | - |
2.8544 | 17900 | 0.0575 | - |
2.8704 | 18000 | 0.0582 | - |
2.8863 | 18100 | 0.0577 | - |
2.9022 | 18200 | 0.057 | - |
2.9182 | 18300 | 0.0572 | - |
2.9341 | 18400 | 0.0558 | - |
2.9501 | 18500 | 0.0578 | - |
2.9660 | 18600 | 0.0567 | - |
2.9820 | 18700 | 0.0569 | - |
2.9979 | 18800 | 0.0547 | - |
3.0139 | 18900 | 0.0542 | - |
3.0298 | 19000 | 0.0563 | - |
3.0458 | 19100 | 0.0549 | - |
3.0617 | 19200 | 0.0531 | - |
3.0777 | 19300 | 0.053 | - |
3.0936 | 19400 | 0.0557 | - |
3.1096 | 19500 | 0.0546 | - |
3.1255 | 19600 | 0.0518 | - |
3.1414 | 19700 | 0.0517 | - |
3.1574 | 19800 | 0.0528 | - |
3.1733 | 19900 | 0.0551 | - |
3.1893 | 20000 | 0.0544 | - |
3.2052 | 20100 | 0.0526 | - |
3.2212 | 20200 | 0.0494 | - |
3.2371 | 20300 | 0.0537 | - |
3.2531 | 20400 | 0.0568 | - |
3.2690 | 20500 | 0.0525 | - |
3.2850 | 20600 | 0.0566 | - |
3.3009 | 20700 | 0.0539 | - |
3.3169 | 20800 | 0.0531 | - |
3.3328 | 20900 | 0.0524 | - |
3.3487 | 21000 | 0.0543 | - |
3.3647 | 21100 | 0.0537 | - |
3.3806 | 21200 | 0.0524 | - |
3.3966 | 21300 | 0.0516 | - |
3.4125 | 21400 | 0.0537 | - |
3.4285 | 21500 | 0.0515 | - |
3.4444 | 21600 | 0.0537 | - |
3.4604 | 21700 | 0.0526 | - |
3.4763 | 21800 | 0.0508 | - |
3.4923 | 21900 | 0.0526 | - |
3.5082 | 22000 | 0.0521 | - |
3.5242 | 22100 | 0.054 | - |
3.5401 | 22200 | 0.053 | - |
3.5561 | 22300 | 0.0509 | - |
3.5720 | 22400 | 0.0526 | - |
3.5879 | 22500 | 0.0551 | - |
3.6039 | 22600 | 0.0556 | - |
3.6198 | 22700 | 0.0497 | - |
3.6358 | 22800 | 0.0515 | - |
3.6517 | 22900 | 0.0514 | - |
3.6677 | 23000 | 0.0503 | - |
3.6836 | 23100 | 0.0515 | - |
3.6996 | 23200 | 0.0553 | - |
3.7155 | 23300 | 0.0519 | - |
3.7315 | 23400 | 0.0549 | - |
3.7474 | 23500 | 0.0522 | - |
3.7634 | 23600 | 0.0526 | - |
3.7793 | 23700 | 0.0525 | - |
3.7952 | 23800 | 0.051 | - |
3.8112 | 23900 | 0.0509 | - |
3.8271 | 24000 | 0.0503 | - |
3.8431 | 24100 | 0.0524 | - |
3.8590 | 24200 | 0.0526 | - |
3.8750 | 24300 | 0.0512 | - |
3.8909 | 24400 | 0.0518 | - |
3.9069 | 24500 | 0.0521 | - |
3.9228 | 24600 | 0.0524 | - |
3.9388 | 24700 | 0.051 | - |
3.9547 | 24800 | 0.0535 | - |
3.9707 | 24900 | 0.0508 | - |
3.9866 | 25000 | 0.0514 | - |
4.0 | 25084 | - | nan |
Framework Versions
- Python: 3.10.9
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.4.1+cu124
- Accelerate: 0.33.0
- Datasets: 2.18.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CachedMultipleNegativesRankingLoss
@misc{gao2021scaling,
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
year={2021},
eprint={2101.06983},
archivePrefix={arXiv},
primaryClass={cs.LG}
}