--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - generated_from_trainer model-index: - name: vit-base-patch16-224-franciscoflores-classification results: [] metrics: - accuracy language: - en - es --- # vit-base-patch16-224-franciscoflores-classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the julien-c/hotdog-not-hotdog dataset. It achieves the following results on the evaluation set: - Loss: 0.0074 - Accuracy :0.9966 ## Model description Modelo de clasificacion binaria de imagenes proveniente del modelo 'google/vit-base-patch16-224-in21k', este modelo se encarga de clasificacion de imagenes de comida en donde indica cuales imagenes son comida y cuales no ///////This is a binary image classification model based on the 'google/vit-base-patch16-224-in21k' model. It is designed for classifying images of food, indicating which images depict food and which ones do not ## Intended uses & limitations More information needed ## Training and evaluation data el dataset utilizado para su entrenamiento es "sasha/dog-food" The dataset used for its training is "sasha/dog-food." ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.045 | 1.9 | 500 | 0.0828 | | 0.0081 | 3.8 | 1000 | 0.0074 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3