--- tags: - merge - mergekit - lazymergekit - rhysjones/phi-2-orange-v2 - rhysjones/phi-2-orange-v2 - rhysjones/phi-2-orange-v2 - rhysjones/phi-2-orange-v2 - abacaj/phi-2-super - abacaj/phi-2-super - abacaj/phi-2-super base_model: - rhysjones/phi-2-orange-v2 - rhysjones/phi-2-orange-v2 - rhysjones/phi-2-orange-v2 - rhysjones/phi-2-orange-v2 - abacaj/phi-2-super - abacaj/phi-2-super - abacaj/phi-2-super --- # Delta-4B-SuperOrange Delta-4B-SuperOrange is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [rhysjones/phi-2-orange-v2](https://huggingface.co/rhysjones/phi-2-orange-v2) * [rhysjones/phi-2-orange-v2](https://huggingface.co/rhysjones/phi-2-orange-v2) * [rhysjones/phi-2-orange-v2](https://huggingface.co/rhysjones/phi-2-orange-v2) * [rhysjones/phi-2-orange-v2](https://huggingface.co/rhysjones/phi-2-orange-v2) * [abacaj/phi-2-super](https://huggingface.co/abacaj/phi-2-super) * [abacaj/phi-2-super](https://huggingface.co/abacaj/phi-2-super) * [abacaj/phi-2-super](https://huggingface.co/abacaj/phi-2-super) ## 🧩 Configuration ```yaml dtype: bfloat16 merge_method: passthrough slices: - sources: - layer_range: [0, 8] model: rhysjones/phi-2-orange-v2 - sources: - layer_range: [4, 12] model: rhysjones/phi-2-orange-v2 - sources: - layer_range: [8, 16] model: rhysjones/phi-2-orange-v2 - sources: - layer_range: [12, 20] model: rhysjones/phi-2-orange-v2 - sources: - layer_range: [16, 24] model: abacaj/phi-2-super - sources: - layer_range: [20, 28] model: abacaj/phi-2-super - sources: - layer_range: [24, 32] model: abacaj/phi-2-super ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "gmonsoon/Delta-4B-SuperOrange" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```