--- widget: - text: Hello, My name is Junpei, who are you? example_title: Identity - text: Describe Aurora Borealis example_title: Capabilities - text: Create a fastapi endpoint to retrieve the weather given a zip code. example_title: Coding license: apache-2.0 language: - en pipeline_tag: text-generation --- ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "gmonsoon/delta-4b-orange" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```