Update README.md
Browse files
README.md
CHANGED
@@ -68,21 +68,15 @@ args = TrainingArguments(
|
|
68 |
|
69 |
output_dir="/content/gdrive/MyDrive/model/NEW-Meta-Llama-3-8B-MEDAL-flash-attention-2-cosine-evaldata",
|
70 |
|
71 |
-
#num_train_epochs=3,
|
72 |
-
num_train_epochs=1,
|
73 |
per_device_train_batch_size=2, # batch size per device during training
|
74 |
-
|
75 |
gradient_accumulation_steps=8, # number of steps before performing a backward/update pass
|
76 |
gradient_checkpointing=True, # use gradient checkpointing to save memory
|
77 |
-
|
78 |
-
optim="adamw_torch_fused",
|
79 |
-
|
80 |
-
#ELECTRA is trained with Adam optimizer with learning
|
81 |
-
#rate of 0.00002 and with batch size of 16
|
82 |
-
|
83 |
-
#trainer = Trainer(model=model, args=training_args, train_dataset=ds, optimizers=(adam_bnb_optim, None))
|
84 |
-
logging_steps=200, # log every 10 steps
|
85 |
-
#save_strategy="epoch", # save checkpoint every epoch
|
86 |
|
87 |
learning_rate=2e-4, # learning rate, based on QLoRA paper # i used in the first model
|
88 |
bf16=True, # use bfloat16 precision
|
@@ -95,15 +89,16 @@ args = TrainingArguments(
|
|
95 |
|
96 |
push_to_hub=True, # push model to hub
|
97 |
report_to="tensorboard", # report metrics to tensorboard
|
|
|
98 |
gradient_checkpointing_kwargs={"use_reentrant": True},
|
99 |
|
100 |
load_best_model_at_end=True,
|
101 |
logging_dir="/content/gdrive/MyDrive/model/NEW-Meta-Llama-3-8B-MEDAL-flash-attention-2-cosine-evaldata/logs",
|
102 |
|
103 |
-
evaluation_strategy="steps",
|
104 |
eval_steps=200, # Evaluate every 50 steps
|
105 |
-
save_strategy="steps",
|
106 |
-
save_steps=200,
|
107 |
metric_for_best_model = "loss",
|
108 |
]
|
109 |
)
|
|
|
68 |
|
69 |
output_dir="/content/gdrive/MyDrive/model/NEW-Meta-Llama-3-8B-MEDAL-flash-attention-2-cosine-evaldata",
|
70 |
|
71 |
+
#num_train_epochs=3, # number of training epochs
|
72 |
+
num_train_epochs=1, # number of training epochs for POC
|
73 |
per_device_train_batch_size=2, # batch size per device during training
|
74 |
+
|
75 |
gradient_accumulation_steps=8, # number of steps before performing a backward/update pass
|
76 |
gradient_checkpointing=True, # use gradient checkpointing to save memory
|
77 |
+
|
78 |
+
optim="adamw_torch_fused", # use fused adamw optimizer
|
79 |
+
logging_steps=200, # log every 200 steps
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
learning_rate=2e-4, # learning rate, based on QLoRA paper # i used in the first model
|
82 |
bf16=True, # use bfloat16 precision
|
|
|
89 |
|
90 |
push_to_hub=True, # push model to hub
|
91 |
report_to="tensorboard", # report metrics to tensorboard
|
92 |
+
|
93 |
gradient_checkpointing_kwargs={"use_reentrant": True},
|
94 |
|
95 |
load_best_model_at_end=True,
|
96 |
logging_dir="/content/gdrive/MyDrive/model/NEW-Meta-Llama-3-8B-MEDAL-flash-attention-2-cosine-evaldata/logs",
|
97 |
|
98 |
+
evaluation_strategy="steps", # Evaluate at step intervals
|
99 |
eval_steps=200, # Evaluate every 50 steps
|
100 |
+
save_strategy="steps", # Save checkpoints at step intervals
|
101 |
+
save_steps=200, # Save every 50 steps (aligned with eval_steps)
|
102 |
metric_for_best_model = "loss",
|
103 |
]
|
104 |
)
|