--- language: - ko license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer metrics: - wer base_model: openai/whisper-large-v2 model-index: - name: whisper_finetune results: [] --- # whisper_finetune This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the aihub_100000 dataset. It achieves the following results on the evaluation set: - Loss: 0.1966 - Cer: 5.9236 - Wer: 23.0770 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Cer | Validation Loss | Wer | |:-------------:|:-----:|:----:|:------:|:---------------:|:-------:| | 0.1866 | 0.16 | 1000 | 6.0386 | 0.1963 | 23.2684 | | 0.1788 | 0.32 | 2000 | 6.0483 | 0.1979 | 23.2267 | | 0.1541 | 0.48 | 3000 | 6.0116 | 0.1929 | 23.5519 | | 0.1692 | 0.64 | 4000 | 0.1966 | 5.9236 | 23.0770 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.16.1 - Tokenizers 0.15.1