File size: 3,569 Bytes
507fca9 faa0ffc 507fca9 2372c29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
fine-tuned with text-image dataset `friedrichor/PhotoChat_120_square_HQ`
# Model Details
- Model type: Diffusion-based text-to-image generation model
- Language(s): English
- fine-tuning dataset: [friedrichor/PhotoChat_120_square_HQ](https://huggingface.co/datasets/friedrichor/PhotoChat_120_square_HQ)
## Dataset
[friedrichor/PhotoChat_120_square_HQ](https://huggingface.co/datasets/friedrichor/PhotoChat_120_square_HQ) was used for fine-tuning Stable Diffusion v2.1.
120 image-text pairs
Images were manually screened from the [PhotoChat](https://aclanthology.org/2021.acl-long.479/) dataset, cropped to square, and `Gigapixel` was used to improve the quality.
Image captions are generated by [BLIP-2](https://arxiv.org/abs/2301.12597).
## How to fine-tuning
[friedrichor/Text-to-Image-Summary/fine-tune/text2image](https://github.com/friedrichor/Text-to-Image-Summary/tree/main/fine-tune/text2image)
or [Hugging Face diffusers](https://github.com/huggingface/diffusers/tree/main/examples/text_to_image)
# Simple use example
```python
import torch
from diffusers import StableDiffusionPipeline
device = "cuda:0"
pipe = StableDiffusionPipeline.from_pretrained("friedrichor/stable-diffusion-v2.1-portraiture", torch_dtype=torch.float32)
pipe.to(device)
prompt = "a woman in a red and gold costume with feathers on her head"
extra_prompt = ", facing the camera, photograph, highly detailed face, depth of field, moody light, style by Yasmin Albatoul, Harry Fayt, centered, extremely detailed, Nikon D850, award winning photography"
negative_prompt = "cartoon, anime, ugly, (aged, white beard, black skin, wrinkle:1.1), (bad proportions, unnatural feature, incongruous feature:1.4), (blurry, un-sharp, fuzzy, un-detailed skin:1.2), (facial contortion, poorly drawn face, deformed iris, deformed pupils:1.3), (mutated hands and fingers:1.5), disconnected hands, disconnected limbs"
generator = torch.Generator(device=device).manual_seed(42)
image = pipe(prompt + extra_prompt,
negative_prompt=negative_prompt,
height=768, width=768,
num_inference_steps=20,
guidance_scale=7.5,
generator=generator).images[0]
image.save("image.png")
```
## Prompt template
**Applying prompt templates is helpful for improving image quality**
If you want to generate images with human in the real world, you can try the following prompt template.
```
{{caption}}, facing the camera, photograph, highly detailed face, depth of field, moody light, style by Yasmin Albatoul, Harry Fayt, centered, extremely detailed, Nikon D850, award winning photography
```
If you want to generate images in the real world without human, you can try the following prompt template.
```
{{caption}}, depth of field. bokeh. soft light. by Yasmin Albatoul, Harry Fayt. centered. extremely detailed. Nikon D850, (35mm|50mm|85mm). award winning photography.
```
For more prompt templates, see [Dalabad/stable-diffusion-prompt-templates](https://github.com/Dalabad/stable-diffusion-prompt-templates), [r/StableDiffusion](https://www.reddit.com/r/StableDiffusion/), etc.
## Negative prompt
**Applying negative prompt is also helpful for improving image quality**
For example,
```
cartoon, anime, ugly, (aged, white beard, black skin, wrinkle:1.1), (bad proportions, unnatural feature, incongruous feature:1.4), (blurry, un-sharp, fuzzy, un-detailed skin:1.2), (facial contortion, poorly drawn face, deformed iris, deformed pupils:1.3), (mutated hands and fingers:1.5), disconnected hands, disconnected limbs
```
|